

A Guide to Commenting

Version 2 – Feb, 2006
 Many small changes
Version 1 – Jun, 2001
 Initial release

Jack G. Ganssle

jack@ganssle.com

The Ganssle Group
PO Box 38346

Baltimore, MD 21231
 (410) 504-6660

fax (647) 439-1454

A Guide to Commenting

© 2006 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

According to Henry Petroski (reference 1), the first known book about engineering is the
2000 year old work “De Architectura” by Marcus Vitruvius Pollio. It’s a fairly complete
description of how these skilled artisans created their bridges and tunnels in ancient
Rome.

One historian said of Vitruvius and his book: “He writes in atrocious Latin, but he knows
his business”. Another wrote: “He has all the marks of one unused to composition, to
whom writing is a painful task”.

How little things have changed! Even two millennia ago engineers wrote badly, yet were
recognized as experts in their field. Perhaps even then these Romans were geeks. Were
engineers from Athens Greek geeks?

Some developers care little about their poor writing skills, figuring they interact with
machines, not people. And of course we developers just talk to other writing-challenged
engineers anyway, right?

Wrong.

This is the communications age. The spoken and written word has never been more
important. Consider how email has reinvigorated letter-writing…. yet years ago I
remember hearing philologists moaning about the death of letters.

Old timers will remember how engineers could once function perfectly with no typing
skills. That seems quaint today, when most of us live with a keyboard all but strapped to
our hands. Just as old-fashioned is the idea of a secretary transcribing notes and the fixing
spelling and grammar. Today it’s up to us to express ourselves clearly, with only the
assistance of a spellchecker and an annoyingly-picky grammar engine.

I write a weekly column on embedded.com which generates quite a bit of feedback via
email. The majority of these responses are quite well written, giving lie to the old
generalization of engineers being compositionally challenged. But some replies are rather
appalling. Obviously non-English speakers struggle with our language’s idiosyncrasies.
But all too many of these confusing ungrammatical missives come from Joe Smith in
Anytown, USA.

Even if you’re stuck in a hermitically-sealed cubicle never interacting with people and
just cranking code all day, I contend you still have a responsibility to communicate
clearly and grammatically with others. Software is, after all, a mix of computerese (the C
or C++ itself) and comments (in America, at least, an English-language description meant
for humans, not the computer). If we write perfect C with illegible comments, we’re
doing a lousy job.

A Guide to Commenting

© 2006 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

I read a lot of code from a huge range of developers. Consistently well-done comments
are rare. Sometimes I can see the enthusiasm of the team at the project’s outset. The
startup code is fantastic. Main()’s flow is clear and well documented. As the project
wears on functions get added and coded with less and less care. Comments like

/* ???? */

or my favorite:

/* Is this right? */

start to show up. Commenting frequency declines; clarity gives way to short cryptic
notes; capitalization descends into chaotic randomness. The initial project excitement, as
shown in the careful crafting of early descriptive comments, yields to schedule panic as
the developers all but abandon anything that’s not executable.

Onerous and capricious schedules are a fact of life in this business. It’s natural to chuck
everything not immediately needed to make the product work. Few bosses grade on
quality of the source code. Quality, when considered at all, is usually a back-end
complaint about all the bugs that keep surfacing in the released product, or the ongoing
discovery of defects that pushes the schedule back further and further.

Pride
We firmware folks know that quality starts at the front-end, in proper design and
implementation, using reasonable processes. Quality also requires fine workmanship. Our
profession parallels that of the trade crafts of centuries ago. The perfect joint in a chair
may be almost invisible, but will last forever. A shoddy alternative could be just as hard
to see, but is simply not acceptable. Professional pride mandates doing the right thing just
because we know it’s the best way to build the product.

Most of us create software in secret. I rarely see companies using code inspections, for
example, which at the very least brings our flaws into the cold harsh light of day. Secrecy
naturally breeds laziness. It takes a very strong person to consistently rise above the
temptations of expediency to do things right, even when it’s not clear that there will be a
reward for working carefully.

Though we embedded people work at the border between hardware and software, where
sometimes it’s hard to say where one ends and the other starts, even hardware designers
work in the spotlight. Their creations are subject to ongoing audits during manufacturing,
test and repair. Technicians work with the schematics daily. Faults glare from the page
for everyone to see. Sloppy work can’t be hidden.

A Guide to Commenting

© 2006 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

(Now, though, ASICs, programmable logic and high level synthesis can bury lots of evil
in the confines of an inscrutable IC package. The hardware folks are inheriting all of the
perils of software.)

I’m fascinated by eXtreme Programming, though shudder at some of the practices it
espouses. All of XP’s ideas come from four “core values”: communications, simplicity,
feedback and courage. No other methodology that I’m aware of derives from values. In
America we talk a lot about values, sometimes so much so that the meaning gets lost in
the rhetoric. Yet values of all sorts are the basis of good behavior. I think the XP folks
got it right by deriving the process from values rather than from a collection of good
ideas. However, I’d add a fifth to their list: Pride of Workmanship.

In my experience software created without pride is awful. Shortcuts abound. The limited
docs never mirror current reality. Error conditions and exceptions are poorly thought-out.
For example, Microsoft’s various products have garnered a reputation for their
susceptibility to buffer overflow attacks. Unix, too, has long suffered the same flaws.
Recent posts on the Risks forum http://catless.ncl.ac.uk/Risks/21.84.html and
http://catless.ncl.ac.uk/Risks/21.85.html suggest that the C language is the source of the
problem. Programs written in C usually have no intrinsic array bounds checking; worse,
the dynamic nature of pointers makes automatic run time checks that much more
problematic.

I disagree. C is nothing more than a tool, one that should come with an “adults only”
warning. Those who use it carelessly are at fault, not the language itself. Index into a data
structure without adding the requisite overflow checks and you’re playing with dynamite.
While smoking. In a puddle of gasoline.

Every programmer knows he or she should run simple sanity checks on all data from
untrusted sources. Not doing so is laziness, a lack of Pride in Workmanship. Careful
craftsmen spend a few seconds adding these checks to save months of debugging or
millions in product recalls.

Commenting Suggestions
My standard for commenting is that someone versed in the functionality of the product –
but not the software – should be able to follow the program flow by reading the
comments without reference to the code itself. Code implements an algorithm; the
comments communicate the code’s operation to yourself and others. Maybe even to a
future version of yourself during maintenance years from now.

Write every bit of the documentation (in the USA at least) in English. Noun, verb. Use
active voice. Be concise; don’t write the Great American Novel. Be explicit and
complete; assume your reader hasn’t the slightest insight into the solution of the problem.
In most cases I prefer to incorporate an algorithm description in a function’s header, even
for well-known approaches like Newton’s Method. A description that uses your variable

A Guide to Commenting

© 2006 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

names makes a lot more sense than “see any calculus book for a description.” And let’s
face it: once carefully described in the comments it’s almost trivial to implement the
code.

Capitalize per standard English procedures. IT HASN’T MADE SENSE TO WRITE
ENTIRELY IN UPPER CASE SINCE THE TELETYPE DISAPPEARED 25 YEARS
AGO. the common c practice of never using capital letters is also obsolete. Worst aRe the
DevElopeRs wHo usE rAndOm caSe changeS. Sounds silly, perhaps, but I see a lot of
this. And spel al of the wrds.

Avoid long paragraphs. Use simple sentences. “Start_motor actuates the
induction relay after a pause of <PAUSETIME> seconds, where
<PAUSETIME> is defined in HEADER.H” beats “this function,
when called, will start it all off and flip on the external
controller but not until a time defined in HEADER.H goes
by.”

Begin every module and function with a header in a standard format. The format may
vary a lot between organizations, but should be consistent within a team. Every module
(source file) must start off with a general description of what’s in the file, the company
name, a copyright message if appropriate, and dates. Start every function with a header
that describes what the routine does and how, goes-intas and goes-outas (i.e.,
parameters), the author’s name, date, version, a record of changes with dates and the
name of the programmer who made the change.

C lends itself to the use of asterisks to delimit comments, which is fine. I see a lot of this:

/**************
* comment *
**************/

which is a lousy practice. If your comments end with an asterisk as shown, every edit
requires fixing the position of the trailing asterisk. Leave it off, as follows:

/**************
* comment
**************/

Most modern C compilers accept C++’s double slash comment delimiters, which is more
convenient than the /* */ C requires. Start each comment line with the double slash so
the difference between comments and code is crystal clear.

Some folks rely on a fancy editor to clean up comment formatting or add trailing
asterisks. Don’t. Editors are like religion. Everyone has their own preference, each of
which is configured differently. Someday compilers will accept source files created with
a word processor which will let us define editing styles for different parts of the program.

A Guide to Commenting

© 2006 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Till then dumb ASCII text formatted with spaces (not tabs) is all we can count on to be
portable and reliable.

Enter comments in C at block resolution and when necessary to clarify a line. Don’t feel
compelled to comment each line. It is much more natural to comment groups of lines
which work together to perform a macro function.

Explain the meaning and function of every variable declaration. Long variable names are
merely an aid to understanding; accompany the descriptive name with a deep,
meaningful, prose description. For instance:

uint8 Encoder; // Current encoder position; set by
 // the encoder ISR.

Exploring the naming issue a bit more, insure that names start with the big and work to
the small. An example is: Universe_Galaxy_SolarSystem_Planet. For example:

Timer_0_Initialize

is better than:

Initialize_Timer_0

If you were looking through a dictionary or link map that lists variable names, you’re
more likely to focus on functions related to the timer, rather than to initializing things. So
for a timer we might find:

 Timer_0_Initialize
 Timer_0_Read
 Timer_0_Set

Secondly, never use acronyms and abbreviations as part of a variable or function name,
unless such acronym/abbreviation is defined in the code in a special abbreviations table,
or if it’s an accepted industry convention like LED, LCD, and CRT.

Clarity is our goal! Where “Disp” might mean display (as a verb) to you, to someone else
it might imply a chunk of hardware. “Enc” could be encode or encoder.

An example Abbreviation Table is:

/* Abbreviation Table
 Dsply == Display (the verb)
 Disp == Display (our LCD display)
 Tot == Total
 Calc == Calculation
 Pos == Position
*/

A Guide to Commenting

© 2006 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

In assembly language feel free to use comments that start in column 1, as well as those
appended after an instruction, as follows:

; See if the token pointed to by BX is an ASCII hex char
 mov al,[bx] ; AL contains the token
 cmp al,’0’ ; Is it a zero or bigger?
 jns exit ; Branch if less than ‘0’

But in C or C++ avoid the use of comments to the right of code… because such practice
results in code that looks like hell and is hard to read. The comments never stand out
from the C itself. Instead, with the exception of #DEFINEs, variable declarations and the
like, start all comments on their own line in column 1.

One of the perils of good comments – which is frequently used as an excuse for sloppy
work – is that over time the comments no longer reflect the truth of the code. Comment
drift is intolerable. Pride in Workmanship means we change the docs as we change the
code. The two things happen in parallel. Never defer fixing comments till later, as it just
won’t happen. Better: edit the descriptions first, then fix the code.

One side effect of our industry’s inglorious 50 year history of comment drift is that
people no longer trust comments. Such lack of confidence leads to even sloppier work.
It’s hard to thwart this descent into commenting chaos. Wise developers edit the header
to reflect the update for each patch, but even better add a note that says “comments
updated, too” to build trust in the docs, as follows:

/***
*
* Function int Read_AtoD(void)
*
* Version 1.0 – Initial release 11/4/2005 by Bill Coder
*
* Version 1.1 – Added time-out code in case
* end-of-convert never comes.
* 12/1/2005 by Jill Developer
* Updated the comments to reflect the
* changes in the code.
*
***/

A code terrorist can block copy the “comments updated to reflect changes in the code”
statement… but most of us are a decent sort. We use this as a crutch to help us remember
to update the comments and build trust in the comments for future readers of the code.

A Guide to Commenting

© 2006 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

If you use code inspections (and please do – they are the cheapest known way to get rid
of bugs. See http://ganssle.com/inspections.htm for a description) review the comments
as well as the code. Both are equally important.

Consider changing the way you write functions. Write all of the comments first,
including the header and those buried in the code. Then it’s simple, even trivial, to fill in
the C or C++. Any idiot can write software following a decent design; inventing the
design, reflected in well-written comments, is the really creative part of our jobs.

Finally, remember and practice the Golden Rule: “document unto others as you would
have documented unto you.”

Reference 1: The Pencil : A History of Design and Circumstance by Henry Petroski
(December 1992) Knopf; ISBN: 0679734155

Better Firmware… Faster!

A One Day
Seminar

April 23, 2008 - Chicago
Hilton, Oak Lawn
9333 Cicero Ave.

Oak Lawn, IL

April 25, 2008 - Denver

Embassy Suites Hotel
7525 East Hampden Ave.

Denver Tech Center
Denver, CO

 May 19, 2008
London, UK

Jurys Inn Heathrow
Eastern Perimeter Rd.

Hatton Cross, Hounslow

 Presented by Jack
Ganssle, technical
editor of Embedded

Systems Programming
Magazine, author of 6

books and over 600
articles

 Registration form on last
page of this brochure

 Limited seating; sign up
now and guarantee a

spot.

 The Ganssle Group
PO Box 38346

Baltimore, MD 21231
(410) 504-6660

fax: (647) 439-1454

 register@ganssle.com
www.ganssle.com

For Engineers and Programmers

This seminar will teach you new ways to build higher
quality products in half the time.

 80% of all embedded systems are delivered late…

Sure, you can put in more hours. Be a hero. But working harder is not a sus-

tainable way to meet schedules. We’ll show you how to plug productivity
leaks. How to manage creeping featurism. And ways to balance the conflicting
forces of schedules, quality and functionality.

 … yet it’s not hard to double development productivity

Firmware is the most expensive thing in the universe, yet we do little to con-
trol its costs. Most teams deliver late, take the heat for missing the deadline,
and start the next project having learned nothing from the last. Strangely, ex-

perience is not correlated with fast. But knowledge is, and we’ll give you the
information you need to build code more efficiently, gleaned from hundreds
of embedded projects around the world.

 Bugs are the #1 cause of late projects…
New code generally has 50 to 100 bugs per thousand lines. Traditional debug-
ging is the slowest way to find bugs. We’ll teach you better techniques proven
to be up to 20 times more efficient. And show simple tools that find the night-
marish real-time problems unique to embedded systems.

 … followed by poor scheduling
Though capricious schedules assigned without regard for the workload are
common, even developers who make an honest effort usually fail. We’ll show
you how to decompose a product into schedulable units, and how to use killer
techniques like Wideband Delphi to create more accurate estimates.

 The

Spend a day with Jack Ganssle,
well-known author of the most popular books on embedded systems, technical
editor and columnist for Embedded Systems Programming, and designer of
over 100 embedded products. You’ll learn new ways to produce projects fast
without sacrificing quality. This seminar is the only non-vendor training event
that shows you practical solutions that you can implement immediately. We’ll
cover technical issues – like how to write embedded drivers and isolate per-
formance problems – as well as practical process ideas, including how to man-
age your people and projects. After taking this class you’ll receive a certificate

awarding you 0.7 Continuing Education Units.

Learn from the Industry's Guru

Seminar Leader
Jack Ganssle has written over 600 articles in Embedded Systems Programming, EDN, and other magazines.
His five books, The Art of Programming Embedded Systems, The Art of Developing Embedded

Systems, The Embedded Systems Dictionary, The Firmware Handbook, and Embedded Systems,

World Class Designs are the industry’s standard reference works

Jack lectures internationally at conferences and to businesses, and has been the keynote speaker at the Embedded
Systems Conferences in both Boston and San Francisco. He founded three companies, including one of the largest
embedded tool providers. His extensive product development experience forged his unique approach to building better
firmware faster.

Jack has helped over 600 companies and thousands of developers improve their firmware and consistently deliver better
products on-time and on-budget.

Languages

• C, C++ or Java?

• Code reuse—a myth? How can you benefit?

• Controlling stacks and heaps.

Structuring Embedded Systems

• Manage features… or miss the schedule!

• Using multiple CPUs.

• Five design schemes for faster development.

Overcoming Deadline Madness

• Negotiate realistic deadlines… or deliver late.

• Scheduling - the science versus the art.

• Overcoming the biggest productivity busters.

Stamp Out Bugs!

• Unhappy truths of ICEs, BDMs, and debuggers.

• Managing bugs to get good code fast.

• Quick code inspections that keep the schedule on-track.

• Cool ways to find hardware/software glitches.

Managing Real-Time Code

• Design predictable real-time code.

• Managing reentrancy

• Troubleshooting and eliminating erratic crashes.

• Build better interrupt handlers.

Interfacing to Hardware

• Understanding high-speed signal problems.

• Building peripheral drivers faster.

• Inexpensive performance analyzers

How to Learn from Failures… and Successes

• Embedded disasters, and what we must learn.

• Using postmortems to accelerate the product delivery.

• Seven step plan to firmware success.

Course Outline

0

10

20

30

40

50

60

4
9
5
0

5
7
1
8

6
4
8
6

7
2
5
4

8
0
2
2

8
7
9
0

9
5
5
8

1
0
3
2
6

1
1
0
9
4

1
1
8
6
2

1
2
6
3
0

1
3
3
9
8

1
4
1
6
6

1
4
9
3
4

Microseconds

P
ro

b
a
b

il
it

y

Do your routines execute in a usec or a week? This function is

all over the map, from 6 to 15 msec. You’ll learn to write real-

time code proactively, finding timing issues early.

Why Take This Course?

Frustrated with schedule slippages? Bugs driving you
batty? Product quality sub-par? Can you afford not

to take this class?

 We’ll teach you how to get your products to market
faster with fewer defects. Our recommendations are
practical, useful today, and tightly focused on em-
bedded system development. Don’t expect to hear
another clever but ultimately discarded software
methodology. You’ll also take home a 150-page
handbook with algorithms, ideas and solutions to
common embedded problems.

Here is what some

of our attendees

have said:
Thanks for a great seminar. We really enjoyed it! We're already putting the ideas you

gave us to use.
J. Sargent, CSC

Registration Form on Last Page

I like your practical, no nonsense advice backed up with numbers, your dynamic presentation style, and the nice

handout that you gave us. I will definitely recommend your seminar to other programmers.

Ed Chehovin, US Navy

I just wanted to say thanks for a great seminar last week. Already the information you gave has proven useful – I

used that ISR trick and we finally found an error we’ve been chasing for months.

Sandeep Miran

Thank you so much for a great class! Now my co-workers think I’m the guru!

Dana Woodring, Northrup Grumman

Did you know that…

 … doubling the size of the code results in much more than twice the work? In this seminar you’ll learn ways unique
to embedded systems to partition your firmware to keep schedules from skyrocketing out of control.

 … you can reduce bugs by an order of magnitude before starting debugging? Most firmware starts off with a 5-

10% error rate – 500 or more bugs in a little 10k LOC program. Imagine the impact finding all those has on
the schedule! Learn simple solutions that don’t require revolutionizing the engineering department.

 … you can create a predictable real-time design? This class will show you how to measure the system’s perform-

ance, manage reentrancy, and implement ISRs with the least amount of pain. You’ll even study real timing
data for common C constructs on various CPUs.

 … a 20% reduction in processor loading slashes development time? Learn to keep loading low while simplifying
overall system design.

 … few watchdog timers are properly implemented? Most are partial solutions to a complex problem. We’ll show

you how to build an awesome WDT.

 … most interrupt-driven timers are improperly coded? Subtle asynchronous issues always lead to erratic timer reads

and crashes. The solutions are not obvious, but easy to implement.

 … reuse is usually a waste of time? Most companies fail miserably at it. Though promoted as the solution to the

software crisis, it’s much tougher than advertised. You’ll learn the ingredients of successful reuse.

If you can’t take the time to travel, we can present this seminar at
your facility.

We will train all of your developers and focus on the challenges unique to
your products and team.

Thanks for the terrific
seminar here at
ALSTROM yesterday!
It got rave reviews from
a pretty tough crowd.

Thanks for a valuable, pragmatic, and
informative lesson in embedded systems
design. All the attendees thought it was
well worth their time.

Cheryl Saks, ALSTROM

Craig DeFilippo, Pitney Bowes

I just wanted to thank you again for the great class last week.
With no exceptions, all of the feedback from the participants
was extremely positive. We look forward to incorporating many
of the suggestions and observations into making our work here
more efficient and higher quality.

Carol Batman, INDesign LLC

Contact us for info on how
we can bring this seminar
to your company

E-mail: info@ganssle.com
or call us at 410-504-6660

What are you doing to upgrade your skills? What are you doing to help your engineers succeed?

 Do you consistently produce quality firmware on schedule? If not . . . what are you doing

about it?

Better Firmware… Faster!

A one-day class
April 23, 2008 - Chicago
April 25, 2008 - Denver
May 19, 2008 - London

Spend a day with Jack Ganssle, Embedded System Programming’s Technical Editor and columnist, and
learn new ways to get your products to market faster, and improve your resume with the

0.7 Continuing Education Unite you’ll be awarded.

Registration Information

All of this, plus 150 pages of handouts, for just $695 per person. Plus you will receive a personalized certificate of
completion at the end of the course.

 Groups of 3 or more registering together pay only $595 each.

 Register early and save. Sign up a month in advance, and receive a $50.00 discount.

 Fax this form to 647-439-1454. Or, register by phone at 410-504-6660 or via email to register@ganssle.com.

 Cancellations made more than 14 days prior to the class are refundable less a $50 fee. Cancellations made within
14 days are non-refundable, but are 100% transferable to all courses we offer.

 Today’s Date: Registration Form

 Name: _______________________________________

 Company: _______________________________________

 Mailing address: _______________________________________

 City, State, Zip: _______________________________________

 Phone: ___________________ Extension:_____ ___

 Fax: ___________________

 Email: ___________________

 Location: Chicago Denver _London __

 Number of attendees: ________

 Purchase Order Attached. P.O. Number: _____________

 Charge to: � Visa � MasterCard � American Express

 Card Number: _________________________ Expires: _______

 Name on Card: ___________________________

 Signature: ___________________________

Fax this to 647-439-1454. Or, call us at 410-504-6660.

April 23, 2008
Chicago, IL

Hilton Oak Lawn
9333 Cicero Ave.

Oak Lawn, Chicago

April 25, 2008
Denver, CO

Embassy Suites Hotel
7525 East Hampden Ave.

Denver, CO

May 19, 2008
London, UK

Jurys Inn Heathrow
Eastern Perimeter Rd

Hatton Cross, Hounslow

