

How to Become an Embedded
Geek

Version 6 – Feb, 2007 – Added info on Freescale kit
Version 5 – Oct, 2006 - Added info about new Edition of Programming Embedded Systems
Version 4 - Feb, 2006 - Added info about Zilog’s Z8 board and project ideas link
Version 3 - Oct, 2005 - Added info on Computer Science Lab
Version 2 – Dec, 2004 - Added many links to resources
Version 1 – Initial release

Jack G. Ganssle

jack@ganssle.com

The Ganssle Group
PO Box 38346

Baltimore, MD 21231
 (410) 504-6660

fax (647) 439-1454

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Disclaimer: I love this field. It’s a ton of fun. But jobs can be hard to find. Don’t take the
following as advice to toss your current career to the four winds and jump into the
embedded industry unless you do such from love, for unhappily, long periods of
unemployment are far from unknown in this industry.

I’m writing this while at anchor in Bermuda. There’s no net access aboard, so once or
twice a week I head for an Internet Café ashore and dig through the email avalanche. For
some inscrutable reason lately I’ve been drowning in emails from embedded system
wannabees. “Dear Jack: I lately learned Visual C++ and now want to start a career in
firmware. But no one wants to hire me as I have no experience. What do I do? How to I
learn about firmware?”

Perhaps my experience was atypical. I helped midwife the embedded business, learning
while building products using the very first microprocessors. Like mastering the
mysteries of the birds and the bees, I ran experiments, checked the results, talked to
friends, and iterated till achieving some level of mastery.

Times are different now. Then, we were all amateurs. Today expectations are higher,
competition for available positions brutal. Lately the staggering economy spawns few
new job opportunities; those that surface are more often taken by experienced engineers
than newbies.

So for people making the transition from college to real life I recommend hiding out for a
year or two, if you can afford it. Consider getting an MS degree. If your BS is in
Computer Science, take EE classes. Since the job market is so depressed it makes sense
to optimize your skills to compete better when good times return.

And they will return. It seems we hit a bad economic patch in the beginning of each
decade. Each one feels overwhelming, but they all pass. In the early 70s engineering
collapsed with the loss of the Apollo program. Inflation and other woes caused a big
contraction around 1980. The recession of the early 90s killed the elder Bush’s reelection
bid. Our current problems, too, will pass, fading into an ugly but almost forgotten
memory.

The Long and Winding Road
Too many of my email correspondents are looking for shortcuts. “How do I convince a
potential boss to hire me?” “What book can I read to teach me firmware?” Sorry – there’s
no easy path, no way to pass Go and collect $200. Though the bookstores have plenty of
titles like “Learn to Program in 21 days,” don’t expect to see an equivalent book for
embedded systems.

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Perhaps there is one easy way: get an EE degree. All other approaches will be harder.
The degree gives you instant credibility in the marketplace, though a newly-minted
sheepskin commands bottom-of-the rung salaries.

I wonder if this search for shortcuts is a quintessentially American characteristic. We’re
so anxious to do things today! As a parent I’m constantly astonished to find how kids
need to go through so many experiences themselves. They can’t learn from my hard-won
insights. There’s something intrinsic to humans about learning by doing.

Maybe you’re a master of C++, a whiz at programming in Windows using MFC and the
wealth of tools we expect of any desktop computer. That’s a fantastic, valuable skill. It
does not translate to an “in” into this field. C or C++ are base level skills for any
firmware developer, but are merely a subset of the required expertise.

For there’s a huge gulf between the resource-rich environment of a desktop machine and
a typical embedded system. It’s tough to generalize about firmware, because some
projects run on 4 bit micros in 100 words of code, while others boot complete Windows
or Linux operating systems. But I believe there are some skills shared by all of the best
firmware developers.

First is the ability to work with limited resources. ROM and RAM may be very costly in
high volume or low power products. Where on a desktop heaps and stacks are seemingly
infinite, we firmware folks sometimes trim each to a razor’s edge, too often with
catastrophic results. The Windows developer knows how to speed transcendental math
using lookup tables, but his embedded counterpart looks askance at the sometimes
staggering memory requirements. We use C subsets on minimal processors, where
sometimes the pseudo-C is just a cut above assembly. Processors with poor stack
architectures invariably spawn compilers that play complex games with automatic
variables, games that can and will bite back when used by the unwary developer.

It’s not uncommon for time to be in short supply as well. There are limits to how fast a
small processor can move data around; Moore’s Law does not bring the embedded
developer a faster CPU every few months. When the system is performance-bound,
embedded engineers re-design code, tune routines, and even at times change the
hardware design.

So the accomplished firmware developer is a master of cramming more into less: more
features into less memory, more performance into fewer CPU cycles. Assembly language
always lurks, if only to understand what the compiler generates.

Embedded systems interact in complex and strange ways with the system’s peripherals.
We’re not downloading drivers from some vendor’s web site, or relying on a vast
infrastructure of OS support. Design a simple data acquisition system and odds are you’ll
have to initiate A/D conversions, suck in data, and scale and normalize it. Working with a
serial channel expect to write your own circular queue handlers.

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

We firmware folks are responsible for even the most basic of all functions. On most
processors we must set up chip select pseudo-peripherals to determine the location and
extent of all memory devices, as well as the number of wait states required.

Peculiar devices challenge even the most experience of developers. Pulse width
modulated outputs aren’t uncommon yet defy many people’s understanding. Log amp
compression circuits scale inputs in confusing ways. Even the straightforward switch
behaves very strangely, it’s output bouncing for many milliseconds after it’s depressed.

Beyond simple I/O, though, the realities of our systems means we must be masters of
interrupts and DMA transfers. Data arrives from a plethora of asynchronous sources and
must get routed out as needed. Embedded systems people are expected to be competent at
writing ISRs, and must understand how to create reentrant code.

Many firmware applications multitask, generally employing some sort of a real time OS.
None of these offer the depth of support common to desktop systems; though some of the
commercial OSes give a very complete framework for embedded work, they all look
remarkably austere compared to Unix or Windows. Even today many embedded apps
don’t and can’t use an RTOS, but the well-rounded developer must be versed at
multitasking.

Debugging is especially difficult in the embedded world. If you’ve been spoiled by
Microsoft’s debugger, expect culture shock when trying to peer into the workings of your
firmware. In the best of cases there’s darn little visibility into the workings of our code.
Sometimes we’re required to amend the hardware and software design just to make some
sort of debugging possible – even be it so humble as wiggling pins and monitoring their
states on an oscilloscope. If you can’t debug, you can’t make your stuff work, so plan to
understand ICEs, BDMs, scopes and logic analyzers.

Embedded apps are – or should be – much more reliable than their desktop counterparts.
A Word or Excel crash doesn’t compare in litigation possibilities to an avionics problem
that kills hundreds. Less dramatic failures are just as serious. Having to stop every 20
miles to reboot your car controller is simply unacceptable. Few PC applications run for
more than a few hours at a time, so memory leaks can often go undetected by the average
user who turns the machine off each night. By contrast, an embedded product might have
to run for years without cycling power.

To build reliable code we must understand and practice more extensive design than is
common in other software projects. Failure Mode Analysis is required for some products.
Extensive exception handling is a must. Code coverage tests are mandated for high-rel
projects.

Become an expert C/C++ programmer. Gain competency at assembly language. Master
all of the above. That gives you the basic skills needed for firmware development.

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Changing Careers
An embedded occupation can be lots of fun, personally satisfying, a creative outlet, and
reasonably financially rewarding. A lot of folks see these desirable traits after embarking
on other vocations and search for ways to make a mid-life change. For most of these
people, various family responsibilities make going back to college for an EE or CE
degree impossible. In this case you have to design your own curriculum and advance
your own career strategy.

First, read as much as you can. Here’s a few suggestions.

Bebop to the Boolean Boogie, Clive Maxfield - A fun and interesting digital
design book aimed at folks wanting to understand the hardware.

C Programming for Embedded Systems, Kirk Zurell – A good introduction to
working with small systems like the 6805, 6508 and PIC.

Embedded Systems Building Blocks, Jean LaBrosse – a great into to writing
peripheral handlers. It also includes his firmware standard, a wonderful model for
writing code in a consistent manner.

Embedded Systems Design, Arnold Berger - A nice intro to the embedded world,
with a focus on tools. Also has good hints on selecting processors.

An Embedded Software Primer, David Simon – This is the best introductory book
available. Extremely highly recommended.

Guidelines for the Use of the C Language in Vehicle Based Software, by MISRA -
This is a list of dos and don't dos for writing reliable C code. Not a book per se,
but a hundred page list of rules. All will make you think.

High Speed Digital Design, Howard Johnson and Martin Graham - The best book
available about high-speed issues. The focus is entirely on hardware issues in fast
systems.

MicroC/OS-II, The Real Time Kernel, Jean LaBrosse - Jean LaBrosse. The best
book on real time operating systems. A must-read.

Programming Embedded Systems in C and C++, Michael Barr and Anthony
Massa – An extremely good introduction to the subject, with projects for self-
study. In October, 2006 the second edition came out, which is a complete rewrite.
There’s much more information than before, and it uses the GNU toolchain to
keep costs down for readers who wish to practice in sync with reading the book.
This is possibly the best introductory text on the market.

Serial Port Complete, Jan Axelson - A very complete reference to serial
communications. Handling serial data is a basic skill for every developer.

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Reviews of these books, plus many others, are at http://www.ganssle.com/bkreviews.htm.

Broke? Download Motorola’s introduction to microprocessors (http://e-
www.motorola.com/files/microcontrollers/doc/ref_manual/M68HC05TB.pdf). It’s a
fabulous 300+ page book that gives basic insight into many aspects of working with
microprocessors.

Read embedded.com and chipcenter.com regularly. Scan every issue of Dr Dobb’s
Journal, Embedded Systems Programming, and EE Times magazine.

Read code, too, to see how experienced developers actually make things work. There’s
plenty scattered around the web, on sites like 8051.com, chipcenter.com, microchip.com,
and the like. I especially recommend reading the source to ecos (redhat.com), an open-
source RTOS. Even better, read the source to Jean LaBrosse’s UC/OS, available in the
previously-mentioned book and on ucos-ii.com. Both of these operating systems are the
very model of how we must write code – beautiful, well documented, clear, concise, and
extensible.

Computer Science Lab
If you’re anxious to learn the elements of 8051 programming, basic C, and basic C++,
check out John Koplin’s Computer Science Lab (http://www.computersciencelab.com), a
$19 CD for Windows that contains three separate courses that take the newbie from no
real knowledge of programming to a working knowledge of assembly, C and C++.

The Lab comes with a 8051 simulation environment and IDE for assembly language.A
hyperlinked lesson plan implemented in Microsoft Help files instructs the student in both
the use of the simulator and in the nature of the 8051. A page or two of very basic
electronics sets the stage, followed by a very high level tour of machine and assembly,
addressing modes and hex. The detail is just enough to give a non-technical manager a
sense of our world.

From there the course dive into the processor’s architecture and a basic assembly
language. Each lesson is short and revolves around an example program. Each introduces
a few more instructions and programming concepts. Students use the simulator to run the
supplied examples, and to extend these small programs.

Figure 1 shows the simulator’s IDE. A user can step into, step over, set and remove
breakpoints, right click to change a register or data item. It’s quite conventional and
reasonably complete.

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Figure 1: 8051 Simulator

The first program is a simple infinite loop. Then a counter, then another that computes
factorials. In many cases the programs mirror those implemented with the RPN
calculator, showing clearly the difference between building code in different languages.

But he quickly gets to fun, more engaging programs, such as one that uses PIO bits to
“draw” a moving train on the output window (bottom window of Figure 1). Fun is
important to keep interest levels high, especially in attention-starved adolescents.

The course goes deep and doesn’t neglect uniquely embedded issues like working with
the 8051’s internal peripherals. Simulated timers, UARTs and the like interact with the
programs just as they would on a real chip. It even covers interrupts; the simulator
provides periodic interrupts which the code can capture and process.

While the RPN calculator section ends with a nice summary, the 8051 segment does not.
That’s a shame. We learn best when you tell them what you’re going to tell them, tell
them, and then summarize what you just told them. Instead this part ends somewhat
abruptly after describing the final interrupt program.

From there we leave the truly embedded world behind and move to another IDE, one
running C/C++ under Windows. Though this IDE looks something like that offered by

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Microsoft’s Visual Studio it’s really a shell around GNU C++ compiler and GDB. The
interface prettifies the raw GNU tools, but doesn’t completely isolate you from the very
powerful but maddeningly complex command set. Buttons control most common
functions like single stepping, but for many other operations (like to view a variable) you
must issue a GDB command in the scrolling text window.

John’s approach to teaching C and C++ is much like that for 8051 assembly language. A
serious of graduated lessons with examples, all of which run on the IDE, takes the
student from no C/C++ knowledge at all to that of an apprentice programmer. Mastery
will take more practice, more trial programs, and a bit more depth than provided. But you
will be writing real, useful programs by the end of the course.

This section has two parts – basic C/C++ working in a DOS command window, and then
the elements of writing Windows code. I tried – I really tried – some time ago to write a
Windows program. Visual Studio even created a complete, working “Hello World”
program. But where was the printf? A search found it sitting in a puzzling resource file. I
guess I’ll stick to embedded.

This course cleared up the mysteries. It’s not easy as even the simplest bit of Windows
code uses an awful lot of cryptic API calls. But this course will get you building simple
apps in Microsoftland… ironically while working with GNU tools.

John writes conversationally and engagingly. He doesn’t resist the chance to editorialize,
bashing Microsoft, Sun, Apple, Java slightly to the course’s detriment. He detests
iostreams, operator overloading, and exceptions. Don’t expect to learn about these
concepts. You won’t deal with RTOSes, reentrancy, and other advanced concepts, but
will master a lot using examples that are much more appealing to engineers than the
contrived ones always found in C/C++ books.

Build Stuff
Book knowledge is crucial but complement it with practical experience. Do projects.
Build things. Make them work. Expect problems, but find solutions. Don’t abandon a
project because it’s too hard or you’re confused. Most real development efforts are
plagued by what initially appears as insurmountable problems, that the boss demands we
overcome.

Remember your first crystal radio? I was 10, and wound wire around a toilet paper tube
to form the inductor. Those were indeed the olden days so the only “active” element was
a galena crystal grazed by a wire whisker. The thrill of picking up an AM station in the
earpiece is something I still remember. Today you can get a kit for this sort of radio for
only $11 from http://www.elenco.com/. Fortunately galena is out and a diode is in, so the
device performs a bit better and is much easier to use and construct. They also offer
simple but cool $20-$35 robot kits, and a wealth of other projects. Definitely check out
this site.

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Forest Mims created a $60 course sold by Radio Shack which offers a hands-on
introduction to electronic circuits
(http://www.radioshack.com/product.asp?cookie%5Ftest=1&catalog%5Fname=CTLG&
product%5Fid=28-280). Readers tell me the material is not as well-written as most of
Mims’ work, but the material is very complete and works one up to the level of a
freshman EE lab class.

Parallax, home of the ever-popular Basic Stamp, offers a variety of kits aimed squarely at
the education market (www.parallax.com). Their Understanding Signals kit, for instance,
includes a simple oscilloscope, a bag of parts, and an excellent manual guiding one
through the mysteries of signals. You will need a Basic Stamp computer module to run
all of the experiments. The entire manual is free at
http://www.parallax.com/dl/docs/prod/sic/Signals.pdf.

The company’s $169 Basic Stamp Discovery kit includes everything needed to learn
about building simple embedded systems, with parts and instructions for some 40
projects. Yes, the language is Basic. But that’s a lot more accessible to teens than
assembly or C, especially since Basic is interpreted. There’s no compile/link/download
cycle to interfere with the fun of building and testing. Think Doom rather than chess.

Do check out their PING))) ultrasonic sensor – a $25 sonar module that ranges at
distances up to 11 feet and requires only a single I/O pin. And there’s the $30 Compass
Module, a dual-axis unit that can be the start of a replacement for the standard-issue Boy
Scout compass. I can think of a million projects based on these sensors and hope to find
time to play with them in the future.

Freescale has an interesting and inexpensive ($100) dual processor kid available. See:
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=LFEBS12UB&fsrch=1 .

The venerable 8051 is still used everywhere by everyone. If you’re willing to teach the
essence of 8051-work, there are a lot of cheap development platforms listed at
http://www.8052.com/links.phtml.

TI sells a variety of development kits for their wonderful MSP430 series of processors.
These 16 bitters offer a lot of performance for little money. I’ve got their $49 Flash
Emulation Tool (http://focus.ti.com/docs/toolsw/folders/print/msp-fet430x110.html) and
find it’s a great platform for experimenting. The kit comes with a compiler and debugger,
though stripped down to handle only small programs.

The ubiquitous PIC processor has a lot of support. One site that offers inexpensive
development boards, plus a good book, is
http://www.downtowninternet.com/elproducts/products.htm.

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Imagine Tool’s Microprocessor Starter Kit
(http://imaginetools.com/products/MicroStarterKit.shtml) is a Rabbit-based board with
parts and instructions. Build a ranger, GPS clock, thermostat control and many other
things. The Rabbit comes with Dynamic C, and interactive version of the language that
doesn’t require explicit link and download steps. When my son had to build a school
project that illuminated light bulbs in various patterns based on switch settings, I
suggested using a computer instead of a lot of wires and diodes. We stuffed an
ImagineTools board into the project. He knew no C, so I wrote the device drivers and
showed him the elements of the language. In a few hours he had a working system, one
that apparently worked around the point of the lesson and nicely ticked off the teacher.

http://www.avrfreaks.net offers several hundred projects, all free, all on-line, ranging
from the deadly dull innards of filesystems to robotics, MP3 players, telescope
controllers and much more. This very deep site devoted entirely to the AVR line of
processors also lists tools, free and otherwise. Read the “Newbie’s Guide to AVR
Development” and pass the wisdom on to an interested kid.

Check out the inexpensive PIC and AVR boards at www.dontronics.com, and follow his
newbie advice at http://www.dontronics.com/auto.html.

Want ideas for a project to build? Check out
http://instruct1.cit.cornell.edu/courses/ee476/ideas/EE476.project.ideas.html.

Zilog has a Z8 development board for an unbelievable $40
(http://www.zilog.com/products/partdetails.asp?id=Z8F08200100KIT), available from
Digikey.

For parts and supplies it’s hard to beat Digikey (http://www.digikey.com), which has
everything electronic, from resistors to complete development platforms. I find their web
site very hard to use; get a (free) printed catalog. Small Parts (http://smallparts.com/) is a
great source for petite gears, drives, bearings and more. The mother of all sites for
anything mechanical is McMaster-Carr (http://www.mcmaster.com/), whose service is
astonishing (I get my orders the next day without paying for expedited shipments). They
have everything. Need a bit of stainless angle iron? No problem. Fasteners? You’ll find
all sorts on-line. Tools, plastic, rubber, gears, handles – it’s all there. The printed catalog,
which isn’t needed as the site is so good, runs over 4000 pages, so you get the idea of the
extent of their products.

You’ll be on the way to mastery when the programs become large, not from lousy
implementations, but due to the demanding nature of the project. I figure that a 1000 line
project will teach a lot, but by the time the code reaches 5-10,000 lines of code it starts to
resemble a simple but real-world app.

How to Become an Embedded Geek

© 2005 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Conclusion
Without an appropriate degree, expect to work for a time as an intern or apprentice. Your
salary will drop till you can acquire and demonstrate your competence. I suspect few
people can avoid this painful reality.

Don’t be afraid to ask lots of questions… and be determined to move ahead.

Don’t be afraid to advertise your career dreams; let your current boss know you want to
get into the embedded side of the business (if there is one). These days few companies
are hiring, so it’s easier to make a lateral move from within the organization.

This sounds like a huge amount of work, and it is. If it’s too much, maybe you’re not cut
out for the embedded industry. I suspect that most great developers succeed because they
love doing the work. Indeed, various salary surveys show that, for engineers, money is
one of the least important motivating factors. Doing cool projects inevitably ranks first.

Is it fun all of the time? Of course not. We pay for the thrills by wading through mind-
numbing technical articles and putting up with unenlightened bosses. But if you love
technical challenges, fighting really tough problems that span the range from hardware to
software to even the basic science of some devices, embedded is the field for you. Be
tough, be determined, think long-term… and have fun.

Better Firmware… Faster!

A One Day
Seminar

April 23, 2008 - Chicago
Hilton, Oak Lawn
9333 Cicero Ave.

Oak Lawn, IL

April 25, 2008 - Denver

Embassy Suites Hotel
7525 East Hampden Ave.

Denver Tech Center
Denver, CO

 May 19, 2008
London, UK

Jurys Inn Heathrow
Eastern Perimeter Rd.

Hatton Cross, Hounslow

 Presented by Jack
Ganssle, technical
editor of Embedded

Systems Programming
Magazine, author of 6

books and over 600
articles

 Registration form on last
page of this brochure

 Limited seating; sign up
now and guarantee a

spot.

 The Ganssle Group
PO Box 38346

Baltimore, MD 21231
(410) 504-6660

fax: (647) 439-1454

 register@ganssle.com
www.ganssle.com

For Engineers and Programmers

This seminar will teach you new ways to build higher
quality products in half the time.

 80% of all embedded systems are delivered late…

Sure, you can put in more hours. Be a hero. But working harder is not a sus-

tainable way to meet schedules. We’ll show you how to plug productivity
leaks. How to manage creeping featurism. And ways to balance the conflicting
forces of schedules, quality and functionality.

 … yet it’s not hard to double development productivity

Firmware is the most expensive thing in the universe, yet we do little to con-
trol its costs. Most teams deliver late, take the heat for missing the deadline,
and start the next project having learned nothing from the last. Strangely, ex-

perience is not correlated with fast. But knowledge is, and we’ll give you the
information you need to build code more efficiently, gleaned from hundreds
of embedded projects around the world.

 Bugs are the #1 cause of late projects…
New code generally has 50 to 100 bugs per thousand lines. Traditional debug-
ging is the slowest way to find bugs. We’ll teach you better techniques proven
to be up to 20 times more efficient. And show simple tools that find the night-
marish real-time problems unique to embedded systems.

 … followed by poor scheduling
Though capricious schedules assigned without regard for the workload are
common, even developers who make an honest effort usually fail. We’ll show
you how to decompose a product into schedulable units, and how to use killer
techniques like Wideband Delphi to create more accurate estimates.

 The

Spend a day with Jack Ganssle,
well-known author of the most popular books on embedded systems, technical
editor and columnist for Embedded Systems Programming, and designer of
over 100 embedded products. You’ll learn new ways to produce projects fast
without sacrificing quality. This seminar is the only non-vendor training event
that shows you practical solutions that you can implement immediately. We’ll
cover technical issues – like how to write embedded drivers and isolate per-
formance problems – as well as practical process ideas, including how to man-
age your people and projects. After taking this class you’ll receive a certificate

awarding you 0.7 Continuing Education Units.

Learn from the Industry's Guru

Seminar Leader
Jack Ganssle has written over 600 articles in Embedded Systems Programming, EDN, and other magazines.
His five books, The Art of Programming Embedded Systems, The Art of Developing Embedded

Systems, The Embedded Systems Dictionary, The Firmware Handbook, and Embedded Systems,

World Class Designs are the industry’s standard reference works

Jack lectures internationally at conferences and to businesses, and has been the keynote speaker at the Embedded
Systems Conferences in both Boston and San Francisco. He founded three companies, including one of the largest
embedded tool providers. His extensive product development experience forged his unique approach to building better
firmware faster.

Jack has helped over 600 companies and thousands of developers improve their firmware and consistently deliver better
products on-time and on-budget.

Languages

• C, C++ or Java?

• Code reuse—a myth? How can you benefit?

• Controlling stacks and heaps.

Structuring Embedded Systems

• Manage features… or miss the schedule!

• Using multiple CPUs.

• Five design schemes for faster development.

Overcoming Deadline Madness

• Negotiate realistic deadlines… or deliver late.

• Scheduling - the science versus the art.

• Overcoming the biggest productivity busters.

Stamp Out Bugs!

• Unhappy truths of ICEs, BDMs, and debuggers.

• Managing bugs to get good code fast.

• Quick code inspections that keep the schedule on-track.

• Cool ways to find hardware/software glitches.

Managing Real-Time Code

• Design predictable real-time code.

• Managing reentrancy

• Troubleshooting and eliminating erratic crashes.

• Build better interrupt handlers.

Interfacing to Hardware

• Understanding high-speed signal problems.

• Building peripheral drivers faster.

• Inexpensive performance analyzers

How to Learn from Failures… and Successes

• Embedded disasters, and what we must learn.

• Using postmortems to accelerate the product delivery.

• Seven step plan to firmware success.

Course Outline

0

10

20

30

40

50

60

4
9
5
0

5
7
1
8

6
4
8
6

7
2
5
4

8
0
2
2

8
7
9
0

9
5
5
8

1
0
3
2
6

1
1
0
9
4

1
1
8
6
2

1
2
6
3
0

1
3
3
9
8

1
4
1
6
6

1
4
9
3
4

Microseconds

P
ro

b
a
b

il
it

y

Do your routines execute in a usec or a week? This function is

all over the map, from 6 to 15 msec. You’ll learn to write real-

time code proactively, finding timing issues early.

Why Take This Course?

Frustrated with schedule slippages? Bugs driving you
batty? Product quality sub-par? Can you afford not

to take this class?

 We’ll teach you how to get your products to market
faster with fewer defects. Our recommendations are
practical, useful today, and tightly focused on em-
bedded system development. Don’t expect to hear
another clever but ultimately discarded software
methodology. You’ll also take home a 150-page
handbook with algorithms, ideas and solutions to
common embedded problems.

Here is what some

of our attendees

have said:
Thanks for a great seminar. We really enjoyed it! We're already putting the ideas you

gave us to use.
J. Sargent, CSC

Registration Form on Last Page

I like your practical, no nonsense advice backed up with numbers, your dynamic presentation style, and the nice

handout that you gave us. I will definitely recommend your seminar to other programmers.

Ed Chehovin, US Navy

I just wanted to say thanks for a great seminar last week. Already the information you gave has proven useful – I

used that ISR trick and we finally found an error we’ve been chasing for months.

Sandeep Miran

Thank you so much for a great class! Now my co-workers think I’m the guru!

Dana Woodring, Northrup Grumman

Did you know that…

 … doubling the size of the code results in much more than twice the work? In this seminar you’ll learn ways unique
to embedded systems to partition your firmware to keep schedules from skyrocketing out of control.

 … you can reduce bugs by an order of magnitude before starting debugging? Most firmware starts off with a 5-

10% error rate – 500 or more bugs in a little 10k LOC program. Imagine the impact finding all those has on
the schedule! Learn simple solutions that don’t require revolutionizing the engineering department.

 … you can create a predictable real-time design? This class will show you how to measure the system’s perform-

ance, manage reentrancy, and implement ISRs with the least amount of pain. You’ll even study real timing
data for common C constructs on various CPUs.

 … a 20% reduction in processor loading slashes development time? Learn to keep loading low while simplifying
overall system design.

 … few watchdog timers are properly implemented? Most are partial solutions to a complex problem. We’ll show

you how to build an awesome WDT.

 … most interrupt-driven timers are improperly coded? Subtle asynchronous issues always lead to erratic timer reads

and crashes. The solutions are not obvious, but easy to implement.

 … reuse is usually a waste of time? Most companies fail miserably at it. Though promoted as the solution to the

software crisis, it’s much tougher than advertised. You’ll learn the ingredients of successful reuse.

If you can’t take the time to travel, we can present this seminar at
your facility.

We will train all of your developers and focus on the challenges unique to
your products and team.

Thanks for the terrific
seminar here at
ALSTROM yesterday!
It got rave reviews from
a pretty tough crowd.

Thanks for a valuable, pragmatic, and
informative lesson in embedded systems
design. All the attendees thought it was
well worth their time.

Cheryl Saks, ALSTROM

Craig DeFilippo, Pitney Bowes

I just wanted to thank you again for the great class last week.
With no exceptions, all of the feedback from the participants
was extremely positive. We look forward to incorporating many
of the suggestions and observations into making our work here
more efficient and higher quality.

Carol Batman, INDesign LLC

Contact us for info on how
we can bring this seminar
to your company

E-mail: info@ganssle.com
or call us at 410-504-6660

What are you doing to upgrade your skills? What are you doing to help your engineers succeed?

 Do you consistently produce quality firmware on schedule? If not . . . what are you doing

about it?

Better Firmware… Faster!

A one-day class
April 23, 2008 - Chicago
April 25, 2008 - Denver
May 19, 2008 - London

Spend a day with Jack Ganssle, Embedded System Programming’s Technical Editor and columnist, and
learn new ways to get your products to market faster, and improve your resume with the

0.7 Continuing Education Unite you’ll be awarded.

Registration Information

All of this, plus 150 pages of handouts, for just $695 per person. Plus you will receive a personalized certificate of
completion at the end of the course.

 Groups of 3 or more registering together pay only $595 each.

 Register early and save. Sign up a month in advance, and receive a $50.00 discount.

 Fax this form to 647-439-1454. Or, register by phone at 410-504-6660 or via email to register@ganssle.com.

 Cancellations made more than 14 days prior to the class are refundable less a $50 fee. Cancellations made within
14 days are non-refundable, but are 100% transferable to all courses we offer.

 Today’s Date: Registration Form

 Name: _______________________________________

 Company: _______________________________________

 Mailing address: _______________________________________

 City, State, Zip: _______________________________________

 Phone: ___________________ Extension:_____ ___

 Fax: ___________________

 Email: ___________________

 Location: Chicago Denver _London __

 Number of attendees: ________

 Purchase Order Attached. P.O. Number: _____________

 Charge to: � Visa � MasterCard � American Express

 Card Number: _________________________ Expires: _______

 Name on Card: ___________________________

 Signature: ___________________________

Fax this to 647-439-1454. Or, call us at 410-504-6660.

April 23, 2008
Chicago, IL

Hilton Oak Lawn
9333 Cicero Ave.

Oak Lawn, Chicago

April 25, 2008
Denver, CO

Embassy Suites Hotel
7525 East Hampden Ave.

Denver, CO

May 19, 2008
London, UK

Jurys Inn Heathrow
Eastern Perimeter Rd

Hatton Cross, Hounslow

