

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 105
Editor: Jack Ganssle (jack@ganssle.com) Nov. 4, 2004

You may redistribute this newsletter for noncommercial purposes. For commercial use
contact info@ganssle.com.

EDITOR: Jack Ganssle, jack@ganssle.com

CONTENTS:
- Editor’s Notes
- More on Watchdogs
- Free x86 Compilers
- Core Memory
- Computing CRCs
- Jobs!
- Joke for the Week
- About The Embedded Muse

Editor’s Notes

When? December 10th. Where? Las Vegas. That’s where I’ll hold the next Better
Firmware Faster seminar. This is the only non-vendor class that shows practical, hard-
hitting ways to get your products out much faster with fewer bugs. 80% of systems get
delivered late, often hopelessly bug-ridden. It *is* possible to do better – much better.
See http://www.ganssle.com/classes.htm for more details including cheap fly- in options,
and information about free hotel rooms.

I often do this seminar on-site, for companies with a dozen or more embedded folks
who’d like to learn more efficient ways to build firmware. See
http://www.ganssle.com/onsite.htm.

I’ll be at Electronica/The Embedded Systems Confe rence in Munich from November 9 to
the 11th, presenting three talks. If you’re there, stop by and say “hi!”

More on Watchdogs

Several thousands people a month download my paper about building and using
watchdog timers (http://www.ganssle.com/watchdogs.pdf). This is obviously a subject of
much interest to developers.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

EM Microelectronic has a new series of watchdog timers and power supervisory chips
that look pretty decent. The devices are “windowing” watchdogs, which force the
developer to issue tickles no faster than some programmed rate, as well as no less often
than another frequency. This, of course, limits the chances that a crashed program will
erroneously issue successful tickles.

See http://www.emmicroelectronic.com/DetailNews.asp?IdNews=78 for more
information.

Free x86 Compilers

Wilton Helm sent along this tidbit. The Watcom x86 compiler has been released under a
GPL type license with open source. They have had a reputation as being one of the more
efficient compilers, the user interface is fairly good, and a debugger, including remote
capability, is included. The major advantage over Borland is that the source code is
available. See http://www.openwatcom.com.

Borland has long provided Turbo C for free. This compiler is still used by a lot of 186
developers. Find more at http://bdn.borland.com/article/0,1410,20841,00.html

Core Memory

“Core dump? What does *that* mean?” a teenaged Unix-wanna-be inquired. I looked up,
and thought (not for the first time) that young folks sure keep the mad dash of
technological change in perspective. Their questions often require more thought and
introspection than those of their elders

I pulled out one of my holy relics - a 3 pound, 13,000 bit core array acquired from a
surplus shop in 1971. A few days after high school graduation I hitchhiked with a pal to
Boston (those were kinder, gentler days) to find treasures in the disorganized depths of a
surplus shop.

Was it our long hair? Maybe the fact that we were warned three times to get off the New
Jersey Turnpike had something to do with it. Somehow Gary and I found ourselves in a
New Jersey jail cell, busted for hitchhiking. The police, expecting to find a stash of drugs
in our backpacks, were surprised to discover instead my 13,000 bits of core.

“What’s this?” the chief growled. I timidly tried to convince him it was computer
memory. These were the days when computers cost millions and were tended by an army
of white robed technicians, not hitchhiking hippie-freaks. The cops looked dubious, but
could find nothing to dispute my story. They eventually let us go, me still clutching the
memory.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

A few months later I started college. The school had an Univac 1108, a $10 million
mainframe that serviced all of the university’s students. We upgraded the machine,
adding 256k words (36 bits each) of additional core memory, at a cost of $500,000. The
core featured a 750 nsec cycle time and was the size of several refrigerators. For months,
until Univac’s engineers got the bugs out, leaning on the box was sure to cause bit
dropouts. This almost always crashed the system and drove users into an uproar,
especially during finals week when projects were due. The machine serviced some 500
users simultaneously, yet had only 768k words of memory, much less than in one of
today’s laptops. A six foot long drum memory stored something like 50 megabytes. The
1108’s claim to fame was instruction execution in under a microsecond, a claim that
pales next to the Pentium’s sub-nanosecond time… for a price that approaches zero
dollars.

No one dreamed of personal computers back then. Sure, a few stories circulated about the
surplus deal of the century, where a clever person picked up an old 7094 for a pittance.
Few could afford the electricity, let alone the astronomical air conditioning costs required
for running such a monster.

IBM’s 7094 was a wildly successful mainframe. My school had one of those as well.
Core was so expensive that the entire system had but a pathetic 64k - with no disk
storage. Programs wrote temporary information to tape, keeping a room full of drives
whirring constantly. There was no security to speak of. One of our great delights was
running a program that searched for teachers’ programs on the input tape, always with the
hope of finding grades that could be, ah, “debugged”. Eventually the university wised up
and bought an additional Univac with no student accounts or dial- in lines, which ran all
of the grading and billing software.

Coming back to the present, I showed off the core matrix. You know how teenagers are -
she didn’t believe a word I said. “Come on, that thing only stores 13k bits? It’s bigger
than my whole computer,” she noted, disdainfully, as if I were a stone-age man showing
off my cave painting technology to a Photoshop whiz.

I realized that 10 of the cores covered an area about the same as a 256 Mbit DRAM die.
How things have changed!

Each core is a ferrite bead, perhaps the size of a small letter “o”. Four wires run through
the center of each core, four wires tediously strung, by hand, by Asian women who no
doubt worked for a pittance.

Cores are tiny magnets, each remembering just one bit of information. The trick is to flip
the magnetic field of the cores - one direction is a “one”; the opposite field indicates a
“zero”.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

As we know from basic electromagnetics, a changing voltage creates a magnetic field,
just as a change in a magnetic field induces a voltage. The wires running inside of the
ferrite beads create the fields that flip the direction of magnetization to store a zero or a
one. The wires also sense the magnetic field so the computer can read the stored data.

Two of the wires organize the core into an X-Y matrix. The core plane is an array of
vertical and horizontal wires with a bead at each intersecting node. Run 50% of the power
needed to flip a bit down each wire - at the intersection there’s all that’s needed to flip
just that one bit. What a simple addressing scheme! As the bit changes state, it induces a
positive or negative pulse in a third wire that runs through all of the cores in a plane.
Sensitive amplifiers convert the positive or negative signal to a corresponding zero or
one.

Since the amplifiers detect nothing unless the core changes state, reads are destructive.
You’ve got to toggle the bit, and then write the data back in, on each and every read
cycle. It sounds terribly primitive till one thinks about the awful things we do to keep
modern DRAM alive.

Before microprocessors quite caught on, the instrumentation company where I worked
embedded Data General Nova minicomputers into products. The Nova used core
arranged in a 32k x 16 array.

Since core is non-volatile, remembering even when there’s no power applied, we
regularly left the Nova’s boot loader in a small section of core. My fingers are still
callused from flipping those toggle switches tens of thousands of times, jamming the
binary boot loader into core each time a program crashed so badly it overwrote these
instructions.

As we worked through these reliability issues, my boss - who was the best digital
designer I’ve ever met - told how some military and space projects actually employed
core as logic devices. In a former job he designed systems composed of strands of core
strung together in odd patterns to create computational elements. I remember being just
as incredulous at his stories as the teenager is at mine.

Unfortunately, Unix continues to litter our drives with sendmail.core, httpd.core, and
other binary images, each a snapshot of the death throes of a program. Perhaps twenty
years on, my young friend will regale a new generation with her stories of the bad old
days of computers, before brain implants supplanted keyboards, when people were not
yet integrated into the global data processing network.

(There’s a picture of my core at www.ganssle.com/misc/core.htm .

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

http://www.science.uva.nl/faculteit/museum/CoreMemory.html has good core memory
information, as does http://en.wikipedia.org/wiki/Core_memory .

Computing CRCs

The CRC (Cyclic Redundancy Check) is a sort of sophisticated checksum commonly
used for testing the reliability of data communications. Every sector on a disk has a CRC
of the data stored, so the operating system will be aware of data dropouts. A CRC doesn't
identify which byte is in error, but it pretty much guarantees that you'll be alerted to at
least single bit errors. Serial data, transmitted over SDLC links and the like, use the CRC
as well.

All CRCs are binary polynomials that are divided into the data stream. Unfortunately,
CRC discussions are usually filled with lots of math proving the inherent robustness of
the technique; the math obscures the simplicity of writing CRC-based code, and so
discourages designers from using this method, unless the CRC is automatically calculated
by a fancy peripheral chip.

The most common CRC polynomial is the CCITT form used by IBM's SDLC protocol. It
is of the form:

X**16 + X**12 + X**5 + 1

This means that the input data stream (say, the data being written to the disk drive) is
exclusive ORed into a 16 bit shift register that has feedback terms at the bit locations with
coefficients in the formula, one bit at a time. Each register bit is a function of the CRC to
that point, the input data, and the feedback taps.

In many systems data is transferred as a serial bit stream. SDLC is inherently serial.
Disks all write a single bit at a time to the medium. Modem applications are also bit
oriented. Unfortunately, serial bit streams are a mess to work with in software.

Tanenbaum, in "Computer Networks", claims the accuracy of the SDLC polynomial will
guarantee detection of all single and double bit errors, all errors with an odd number of
error bits, all burst errors of length 16 or less, 99.9969% of all 17 bit error bursts, and
99.984% of all possible longer error bursts. That's pretty impressive!

Unless you can test an algorithm, it's pretty much worthless. The following table has test
values, for a quick evaluation of your code. It assumes the entire string of data comes in;
that is, after the first 0, the output is 0f87, after the second the output is 0f0b8, etc.

Input data Output CRC
preset FFFF

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

0 0F87
0 F0B8
0 3933
0 0321
0 3088
77 0F48
CF F0B8

(Note that feeding one's complement of CRC into the equation yields
F0B8)

crc_value is a global value. Be sure to initialize it to ffff before calling this function for
the first CRC in a block.

unsigned int crc(char ch)
{
 for(i=0; i<8; ++i)
 {
 if((crc_value&1) XOR (ch&1))
 {crc_value=(crc_value>1)XOR 0x8408;}
 else crc_value=crc_value>1;
 ch=ch>1;
 }
}

There’s much more info about CRCs at http://www.ross.net/crc/ and
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

Jobs!

Let me know if you’re hiring firmware or embedded designers. I’ll continue to run
notices for embedded developers as long as the job situation stays in the dumper. No
recruiters please.

Analog Devices currently has several active job opportunities in our Digital Media
Technology Center for the following system engineering positions. The general
descriptions are shown, though we have multiple, similar openings for each position at
various experience and responsibility levels. The job location is nominally Norwood,
MA, near Boston, but long term flexibility is possible.

DSP System Engineer: Responsibilities: Design and debug system software on digital
media chipsets. Design/code/test hardware drivers, memory interfaces and real-time
operating systems. Deliver highly optimized, robust environments for the integrations of
software libraries. Deliver a fully productized (and testable) digital media device.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Design/write/debug the environment for a software based a/v codec chipset and products
based on this chipset. Debug system issues which arise during product integration.

Linux System Engineer: Responsibilities: Implement and debug Linux Kernel, Device
drivers and system software on digital media chipsets. Code/test hardware drivers,
memory interfaces and interactions with real- time operating systems. Deliver highly
optimized, robust environments for the integration of software libraries. Deliver a fully
productized (and testable) Linux based media device. Write/debug the environment for a
software based a/v codec chipset and products based on this chipset. Debug system issues
which arise during product integration.

Gentex Corporation in Zeeland, MI has an opening for an Embedded Software Engineer.
They develop and manufacture advanced electro-optical products for the automotive
industry in C using 8 and 16 bit microprocessors. They are looking for someone with
experience working in a small groups to develop embedded products. View
www.gentex.com for more information or send a resume to debdv@gentex.com.

Digital Audio Corporation (http://www.dacaudio.com) is hiring and senior level
Embedded Hardware and Software Development Engineer. We're a small but stable
company made up mostly of engineers. We are looking for an engineer experienced in
embedded hardware and software (developing DSP and microcontroller hardware and
firmware). We're looking for someone who would enjoy the challenges and rewards of
working on all aspects of a design project: from concept to final product. For more
information, see the detailed job description at
(http://www.dacaudio.com/employment.html). Email resumes to
employment@dacaudio.com.

Plantronics, the world leader in communications headsets, is seeking Embedded Software
Engineers for our Core Technology Development group who have Firmware
development and Wireless, Bluetooth, DECT or 802.11 experience. To apply go to
Plantronics website at http://www.plantronics.com/careers. Click on "Embedded
Software Engineers" to complete a short questionnaire that takes 2-5 minutes.
Plantronics is an AA/EEO Employer.

Joke for the Week

For many years molecular biologists have been mystified by the fact that very little of an
organism's DNA seems to serve any useful function.

The reason why only 30% of human DNA performs any useful function is that the rest of
it is comments.

Once we decode a typical human genome, we see that the contents begin as follows:

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

 /* HUMAN_DNA.H
 *
 * Human Genome
 * Version 2.1
 *
 * (C) God
 */

 /* Revision history:
 *
 * 0000-00-01 00:00 1.0 Adam.
 * 0000-00-02 10:00 1.1 Eve.
 * 0000-00-03 02:11 1.2 Added male version. A bit messy --
 * will require a rewrite later on
 * 0017-03-12 03:14 1.3 Added extra sex drive to male.h;
 * took code from elephant-dna.c
 * 0145-10-03 16:33 1.4 Removed tail.
 * 1115-00-31 17:20 1.5 Shortened forearms, expanded brain case.
 * 2091-08-20 13:56 1.6 Opposable thumbs added to hand() routine.
 * 2501-04-09 14:04 1.7 Minor cosmetic improvements -- skin color
 * darker to match my own image.
 * 2909-07-12 02:21 1.8 Dentition inadequate; added
 * extra 'wisdom' teeth.
 * Must remember to make mouth bigger
 * to compensate.
 * 4501-12-31 14:18 1.9 Increase average height.
 * 6004-11-04 16:11 2.0 Made forefinger narrower to fit hole
 * in center of CD.
 */

 /* Standard definitions */

 #define SEX male
 #define HEIGHT 1.84
 #define MASS 68

 /* Include inherited traits from parent DNA files.
 *
 * Files must be pre-processed with MENDEL program to provide proper
 * inheritance features.
 */

 #include "mother.h"
 #include "father.h"

 #ifndef FATHER
 #warn("Father unknown -- guessing\n")
 #include "love_child.h"
 #endif

 /* Initialization bootstrap routine -- called before DNA duplication.
 * Allocates buffers and sets up protein file pointers

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

 */
 DNA *zygote_initialize(Sperm *, Ovum *);

 /* MAIN INITIALIZATION CODE
 *
 * Returns structures containing pre-processed phenotypes for
 * the organism to display at birth.
 *
 * Will be improved later to make output less ugly.
 */
 Characteristic *lookup_phenotype(Identifier *i);

===

 ...and so on...

[Note that God programs in C, uses three-space tabs and /* */ style comments]

About The Embedded Muse

The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

