

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 121
Editor: Jack Ganssle (jack@ganssle.com) Dec. 19th, 2005

You may redistribute this newsletter for noncommercial purposes. For commercial use
contact info@ganssle.com.

EDITOR: Jack Ganssle, jack@ganssle.com

CONTENTS:
- Editor’s Notes
- Tools
- Unmaintainable Code
- Jobs!
- Joke for the Week
- About The Embedded Muse

Editor’s Notes

TV chef Emeril is always “kicking things up a notch” by adding garlic and other
zestiness to his recipes. How are your firm’s engineering recipes? Want to kick up your
development processes by more than a notch? I can present my Better Firmware Faster
class at your facility. See http://www.ganssle.com/classes.htm .

I find the history of this industry endlessly fascinating. Ars Technica has an interesting
history about the development of the personal computer at
http://arstechnica.com/articles/culture/total-share.ars/ .

Thanks to everyone on this list (over 18,000 of you!) for your thoughts and discussion
over the last year. I wish you health and prosperity in 2006… and a bug-free year!

Tools

I mentioned Beyond Compare as a fantastic compare tool. Readers had a few comments:

Vlad Pambucol wrote:
We use Beyond Compare here in our development and we absolutely love it! It has great
diff capabilities (for instance I like that they show you where your diff is on the line not
just the line that is different), you can re-sync manually your compare (we had to do this

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

for #ifdef branches of the code that we compared with original no ifdef-ed code), you can
compare folders and many many more useful features.

... And speaking of tools (since I like this one a lot too for playing with hex or mot files)
there is a software tool called Hexplorer that can open all sort of bin/hex formats and you
can look in your files, you can do crc and checksums on block of bytes, you have ascii
view and hex view of the file ... very useful tool.

See http://sourceforge.net/projects/hexplorer/ .

Andrew Lin said:
Not a bad diff tool, but I like Araxis Merge better.
http://www.araxis.com/ .

Admittedly, it costs a lot more, but it can do a three-way merge, which
is very useful in a multi-developer environment when the VCS diff tool
can't figure things out.

John Johnson contributed:
On tools I suggest that you look at the following:

1: One tool I have been using of late is a text editor: http://www.vim.org/ developed
under the GPL (hence free and user supported with one champion, a chap named Bram
Moolenaar). vim (or gvim) has color coded code sense for C, C++, HTML, etc. and a
difference utility. vim (gvim) is said to support regular expressions, through a user
supplied plug- in though I have not yet enabled this capability. vim (gim) users have
developed a host of other plug- ins for other purposes.

2: Another tool I have used, but not recently, is ProjeX, an inexpensive ($US20) project
management tool from
http://www.waa-inc.com/projex/index.htm. ProjeX is an Excel plug- in, and in my
opinion, does most of the work of the other project management tool that people actually
need for a fraction of the cost.

3: I am looking for a good and inexpensive (free?) project management tool that produces
simple PERT network diagrams. While ProjeX has PERT capabilities in the data it
generates it does not (based on a look at the web site) generate the network diagrams. A
Googe search for PERT brought up the following tutorial (among other references)
http://www.mindtools.com/pages/article/newPPM_04.htm

Any thoughts on that request anyone?

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Unmaintainable Code

A reader who preferred to remain anonymous reacted to the note about unmaintainable
code. His story is pretty compelling:

Thank you for that link about unmaintainable code, it really made my day. The code
fragment in "Jude the Obscure" was one the funniest things I've seen in a while.
Replacing switch break statements with if(0) statements is truly demented.

The sad truth is that I've run into stuff like this for real. I was involved in the tail end of a
fairly large (at least for us) embedded development project for an OEM customer. The
design was architected and initially implemented by a group of contractors (we were
staffing up for the project and lacked manpower and expertise at the beginning). Just
about every good software development guideline was ignored or perverted in this
project. I'm just guessing, but unless they were just totally clueless, the point of this
seemed to be to create a gravy train of never ending work for the contractors. The actual
result was to harden our attitudes (perhaps unjustly) against ever using contractors again.
Here are some examples of what I mean.

- No RTOS was used although there were two, simultaneous, processes with hard, real
time requirements being handled. The overhead of an RTOS was judged to be too
expensive (in memory space and execution time), so instead each process in the project
had to implement a state machine to only execute a portion of what it needed to do on
each trip through the round robin workloop. We essentially implemented a manually
managed, time-sliced multi-threaded process, except since it wasn't really time-sliced, it
had to be hand tuned to meet timing requirements. Imagine how much effort it took to
make that work reliably. Also try to imagine how difficult it was to add new
functionality without bringing down the whole house of cards. To be fair, this decision
may have been foisted on the contractors (I wasn't part of the group when this decision
was made so I can't say who drove it).

- Modules looked at (and changed!) other module's state variables as a way of
sequencing logic. One of the developers took undue liberties (even by these lax
standards) with other modules to make his own job easier. This created bugs when those
other module were modified. A big part of the refactoring that happened later was to
remove these unnecessary linkages by just having a module ask via a function call if
something was OK to do or to request the other module do something. What a concept!

- Just about all the variables were global and declared in one file named...you guessed it,
glodef.h. Variables were grouped by function (Display, Com Port etc) and extern
declarations were conditionally accessed by any module that wished, by including a

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

#define for that variable groups #ifdef. This file contained both assembly and 'C'
variable definitions and was included in every module in the project (both assembler and
'C'). Tricks where played with comment blocks to prevent the compiler from seeing the
assembly statements and the assembler from seeing the 'C' statements.

- All assembly code variable and function names were 6 characters long even though the
assembler supported long names. The claim was that it made the code easier to read if
everything lined up. This was from the same guy who thought variable names like
wbnpzspt and wbnpzfpt are a good idea (neatly formatted, but totally
incomprehensible).

- Hungarian naming convention was seriously misused. This project had variations that
ran on different processors (8 and 16 bit) and the desire was to have a single set of source
code conditionally compiled for each version (not a bad idea in itself). So all variable
declarations where run through a secret decoder ring to deal with hardware and compiler
differences. One interesting outcome of this was the FUCBYTE definition (an 8 bit, far
unsigned char). I think this particular definition was just some passive-aggressiveness
leaking out from the contractor involved (he seemed like a deeply unhappy man and I
guess he was taking his pleasures where he could).
Here is a real, if trivial example from the code to demonstrate how deeply the
commitment to proper code obfuscation ran in these guys:

for (wbnpzcnt = OTBCCNT, wbnpzfpt = nvNVbuff + NVPAGSZ, wbnpzspt =
nvNVbuff;
 wbnpzcnt != 0 ;
 wbnpzcnt--, wbnpzfpt++, wbnpzspt++)
 *wbnpzspt = *wbnpzfpt ;

Note: The wbnpzcnt, wbnpzfpt and wbnpzspt variables are all LOCAL and are not
used for any other purpose in the function, my eyes glaze when I recall it. This (along
with a number of similar code fragments) was replaced with calls to that
<sarcasm>incredibly esoteric</sarcasm> lib function memcopy.

P.S. Despite (perhaps as a result of) significant turnover in the developers mid-project,
the project actually ended up going very well. We launched the product a month ahead of
schedule and it was one of the most profitable products in my company's history.
Software maintenance was pure hell for about a year, but we had a great software testing
group and decided to bite the bullet and refactor mercilessly at every opportunity which
greatly reduced the pain level.

Jobs!

Let me know if you’re hiring firmware or embedded designers. No recruiters please.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

MITEQ Incorporated located in Hauppauge, New York has a unique opportunity
available for an experienced Embedded Systems Engineer.

To contribute to our dynamic, professional environment, you will need a BSEE, with 5+
years experience in Firmware design. Only candidates with experience in developing
firmware using C and C++ with RTOS experience will qualify for the position.
Experience developing SNMP, Telnet and embedded web servers is preferred. In
addition, those candidates with digital hardware design experience will be given special
consideration.

We offer a competitive compensation and benefits package. To explore this opportunity,
please email your resume to: amarinozzi@miteq.com or fax to (631) 439-9216

Offshore electronic design company in the Caribbean is looking for an
experienced power electronics designer with preferred knowledge of embedded
programming in the area of power factor correction. This would be a consulting job for
this project specifically with the possibility of more future work. Contact
patrick.yepez@avatargroupstgo.com

That one sounds pretty interesting to me on this cold December day!

Joke for the Week

Here’s a site of funny T-shirts for that programmer in your life:
http://www.computergear.com/codetshirts.html . It’s a hoot!

About The Embedded Muse

The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

