

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 126
Editor: Jack Ganssle (jack@ganssle.com) March 9th, 2006

You may redistribute this newsletter for noncommercial purposes. For commercial use
contact info@ganssle.com.

EDITOR: Jack Ganssle, jack@ganssle.com

CONTENTS:
- Editor’s Notes
- Getting Better Firmware
- On Reentrancy
- Yet More on Tools
- Jobs!
- Joke for the Week
- About The Embedded Muse

Editor’s Notes

Will wonders never cease? I thought the relay computer described in Muse 125 was
pretty amazing. The Legos machine in Muse 124 blew my mind. Now David Strip sends
this: “How about Danny Hillis's tinkertoy computer? (Actually, it's Hillis and several
other folks, but his is the name that has come to be associated with the machine.) Here's a
link to a Scientific American article that describes the system in detail -
http://www.rci.rutgers.edu/~cfs/472_html/Intro/TinkertoyComputer/TinkerToy.html .
Here's a link to a pretty good picture of the beast.
http://www.cob.sfasu.edu/sbradley/tinkertoy.html .”

Ventoro has released their interesting 115 page “Offshore 2005 Research, Preliminary
Findings and Conclusions.” A lot of engineers are worried about competition from
inexpensive developers overseas, and this report has some worthwhile insights.

I track offshoring statistics pretty closely, and find no consistency between studies and
figures. Some numbers suggest that the end for first-world engineers is nigh; others make
one think we’re on the edge of a terrible shortage of home-grown talent. One this is clear:
the world is changing. Engineering – and engineers – will have to change as well. My
take on the subject is here: http://embedded.com/showArticle.jhtml?articleID=180206418
. Please note, though, that the first two paragraphs are tongue-in-cheek.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Getting Better Firmware

In 1971 Intel invented the microprocessor… but few knew what to use it for. Even Intel
predicted a tiny market for the device. But they persisted and the following year came out
with the 8008, the first 8 bitter. Companies quickly realized how adding a bit of
intelligence to their products reduced costs and increased functionality. The embedded
systems industry was born.

I was in college, working as an electronics tech at a small outfit named Neotec, but was
the only employee at the company who knew anything about programming. (We had
been using a consultant, who remains in occasional contact.) They tapped me to be their
first in-house firmware developer. Though it was easy to master 8008 assembly language,
my software engineering skills were null. This was typical of the industry. All early
embedded people had been trained as EEs, not computer scientists. 30 years of lessons
learned in the software business were ignored by this fledgling industry.

Programs were small and management clueless about software projects. But the 8008 had
a max address space of 16k so hacking was reasonably effective.

Projects grew in pace with expanding address spaces offered by the 8080, 8088, 68k and
more. Feature sets exploded. Complexity skyrocketed. Glass claims that for every 25%
increase in features complexity grows by 100%, a number that’s hard to dispute.

At Neotec we reacted in the usual manner. Hired more people. Worked longer hours.
Made promises we never fulfilled. And, of course, shipped plenty of bug fixes to irate
customers.

I eventually left and started a consultancy with a partner. What a ride we had! What fun it
was to put our gear in, say, a steel mill with a hundred foot long piece of 2000 degree
steel four inches thick moving at a breakneck pace. (That used a PDP-11 and a number of
Z80s). Or systems that lived 10,000 feet deep in the ocean, running on a few AAs for a
year (RCA 1802). Then there was the White House security system (over 100 8085s),
which we designed and installed during the Reagan years.

After too many late nights we started to sense that there were better approaches than our
usual heroics. But what was wrong with us? Why were we working so hard?

Then I started an in-circuit emulator company. Now providing tech support to embedded
developers all over the world I discovered something interesting. ALL of us had the same
problems. Little groups of engineers all used heroics, and nearly all delivered late.
Ironically, we who invented the communications age didn’t talk to each other. So we all

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

faced the same sorts of challenges, thinking that we were doing something wrong and
that other teams had the secrets to success.

I studied software engineering. The field, all but ignored by firmware folks, had a great
body of accumulated wisdom. Frustrated with the state of our practices, in 1988 I started
writing for various electronics/embedded publications about technical issues and better
ways to develop code.

Over the years I’ve had the honor of serving on a number of boards, including one
technical college, and was even tapped to teach engineering. In those cases it was
shocking to see that too many schools push the same old dysfunctional software methods:
here’s how a “for” loop works. Now write some code.

Ten years ago I sold the emulator business and tried retirement. After one day it seemed a
rather bleak and meaningless state, so looked for something interesting to do, something
which could be of benefit to others. Turns out I’m clueless about most traditional
philanthropic activities, so decided to try and help out in the one field I know and love.
Today I continue to write, and continue to try to educate, berate, and encourage
embedded developers and their managers to improve their techniques.

A couple of companies asked me to come in and provide training about firmware
development. Well, high school speech class was a trauma. I was terrified of talking in
front of anyone, a fear that persisted into my 30s. But as a personal challenge I had
decided to get over this irrational dread and took some speaking classes, and then
practiced. When the Embedded Systems Conference was born they asked me to give a
talk… and I found it an exhilarating experience. What fun to interact with all of these
very smart people! It seemed natural to develop a seminar that would help folks get better
code faster.

Over the last decade I’ve given the seminar to hundreds of companies and thousands of
developers.

No one is naïve enough to think there’s a silver bullet that will solve all our problems.
This field is intrinsically tough. Even if we knew how to generate 10 million lines of
perfect code in a day, customers will scream to shorten the schedule to an hour.

But… it *is* possible to create better code faster. It *is* possible to drastically reduce
bug rates and shorten schedules. Those two do go hand in hand – Capers Jones showed
that bugs are number one cause of missed schedules.

For example, there’s an approach that drives the usual 5-10% pre-test bug rate down by
three orders of magnitude. Though I mention it in the seminars I don’t teach the
technique as few of us, for a variety of reasons, will ever embrace it. That seems odd,

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

perhaps, but my interest is showing methods that most of us can start using
immediately to get dramatic improvements.

And that’s the entire thrust of the seminar. What can we do *today*, in a stealth fashion,
under the scope of management’s radar, to get better code faster? What can we do
without embracing some monster methodology that few will really use, that requires a
revolution in the engineering department that probably won’t happen? What can we
individuals do now to improve our performance?

That’s my passion. I’m frustrated with consumer products that don’t work well, with
safety-critical code that isn’t, with a situation where every three-year-old knows if
something electronical acts odd, cycle power. Can’t we find ways to meet the schedule?

We can. I’ll show you how.

If you want more details and the usual marketing hype, see
http://www.ganssle.com/classes.htm . Most of the time I present the seminar on-site,
when a company asks me to come in for a day. Occasionally I do a public seminar at a
hotel. We have decided to do public seminars in Dallas and Denver this April. About half
the participants fly in; the others tend to be local. Please join us; it’s a jam-packed but
always fun day. I guarantee you’ll learn a lot, all of which is backed up with hard
numbers you can take back to the boss and your colleagues. But seats fill quickly.

</shameless promotion>
<resume normal Embedded Muse>

On Reentrancy

Virtually every embedded system uses interrupts; many support multitasking or
multithreaded operations. These sorts of applications can expect the program’s control
flow to change contexts at just about any time. When that interrupt comes, the current
operation is put on hold and another function or task starts running. What happens if
functions and tasks share variables? Disaster surely looms if one routine corrupts the
other’s data.

By carefully controlling how data is shared, we create “reentrant” functions, those that
allow multiple concurrent invocations that do not interfere with each other. The word
“pure” is sometimes used interchangeably with “reentrant”.

Reentrancy was originally invented for mainframes, in the days when memory was a
valuable commodity. System operators noticed that a dozen or hundreds of identical

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

copies of a few big programs would be in the computer's memory array at any time. At
the University of Maryland, my old hacking grounds, the monster Univac 1108 had one
of the early reentrant FORTRAN compilers. It burned up a (for those days) breathtaking
32kw of system memory, but being reentrant, it required only 32k even if 50 users were
running it. Everyone executed the same code, from the same set of addresses. Each
person had his or her own data area, ye t everyone running the compiler quite literally
executed identical code. As the operating system changed contexts from user to user it
swapped data areas so one person’s work didn’t effect any other. Share the code, but not
the data.

In the embedded world a routine must satisfy the following conditions to be reentrant:
1) It uses all shared variables in an atomic way, unless each is allocated to a specific
instance of the function.
2) It does not call non-reentrant functions.
3) It does not use the hardware in a non-atomic way.

Both the first and last rules use the word “atomic”, which comes from the Greek word
meaning “indivisible”. In the computer world “atomic” means an operation that cannot be
interrupted. Consider the assembly language instruction:
 mov ax,bx

Since nothing short of a reset can stop or interrupt this instruction it’s atomic. It will start
and complete without any interference from other tasks or interrupts

The first part of rule 1 requires the atomic use of shared variables. Suppose two functions
each share the global variable “foobar”. Function A contains:
 temp=foobar;
 temp+=1;
 foobar=temp;

This code is not reentrant, because foobar is used non-atomically. That is, it takes three
statements to change its value, not one. The foobar handling is not indivisible; an
interrupt can come between these statements, switch context to the other function, which
then may also try and change foobar. Clearly there’s a conflict; foobar will wind up with
an incorrect value, the autopilot will crash and hundreds of screaming people will wonder
“why didn’t they teach those developers about reentrancy?”

Suppose, instead, function A looks like:
 foobar+=1;

Now the operation is atomic; an interrupt will not suspend processing with foobar in a
partially-changed state, so the routine is reentrant.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Except… do you really know what your C compiler generates? On an x86 processor the
code might look like:

mov ax,[foobar]
 inc ax
 mov [foobar],ax

which is clearly not atomic, and so not reentrant. The atomic version is:
 inc [foobar]

The moral is to be wary of the compiler; assume it generates atomic code and you may
find 60 Minutes knocking at your door.

The second part of the first reentrancy rule reads “…unless each is allocated to a specific
instance of the function.” This is an exception to the atomic rule that skirts the issue of
shared variables.

An “instance” is a path through the code. There’s no reason a single function can’t be
called from many other places. In a multitasking environment it’s quite possible that
several copies of the function may indeed be executing concurrently. (Suppose the
routine is a driver that retrieves data from a queue; many different parts of the code may
want queued data more or less simultaneously). Each execution path is an “instance” of
the code.

Consider:

int foo;
void some_function(void){
 foo++;
}

foo is a global variable whose scope exists beyond that of the function. Even if no other
routine uses foo, some_function can trash the variable if more than one instance if it runs
at any time.

C and C++ can save us from this peril. Use automatic variables. That is, declare foo
inside of the function. Then, each instance of the routine will use a new version of foo
created from the stack, as follows:

void some_function(void){
int foo;
 foo++;
}

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Another option is to dynamically assign memory (using malloc), again so each
incarnation uses a unique data area. The fundamental reentrancy problem is thus avoided,
as it’s impossible for multiple instances to stamp on a common version of the variable.

The rest of the rules are very simple.

Rule 2 tells us a calling function inherits the reentrancy problems of the callee. That
makes sense; if other code inside the function trashes shared variables, the system is
going to crash. Using a compiled language, though, there’s an insidious problem. Are you
sure – really sure – that the runtime package is reentrant? Obviously string operations and
a lot of other complicated things use runtime calls to do the real work. An awful lot of
compilers also generate runtime calls to do, for instance, long math, or even integer
multiplications and divisions.

If a function must be reentrant, talk to the compiler vendor to insure that the entire
runtime package is pure. If you buy software packages (like a protocol stack) that may be
called from several places, take similar precautions to insure the purchased routines are
also reentrant.

Rule 3 is a uniquely embedded caveat. Hardware looks a lot like a variable; if it takes
more than a single I/O operation to handle a device, reentrancy problems can develop.

What are our best options for eliminating non-reentrant code? The first rule of thumb is
to avoid shared variables. Globals are the source of no end of debugging woes and failed
code. Use automatic variables or dynamically allocated memory.

Yet globals are also the fastest way to pass data around. It’s not entirely possible to
eliminate them from real time systems. So, when using a shared resource (variable or
hardware) we must take a different sort of action.

The most common approach is to disable interrupts during non-reentrant code. With
interrupts off the system suddenly becomes a single-process environment. There will be
no context switches. Disable interrupts, do the non-reentrant work, and then turn
interrupts back on.

Most times this sort of code looks like:

long i;
void do_something(void){
 disable_interrupts();
 i+=0x1234;
 enable_interrupts();
}

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

This solution looks great and is used everywhere… but does not work. If do_something()
is a generic routine, perhaps called from many places, and is invoked with interrupts
disabled, it returns after turning them back on. The machine’s context is changed,
probably in a very dangerous manner.

Don’t use the old excuse “yeah, but I wrote the code and I’m careful. I’ll call the routine
only when I know that interrupts will be on.” A future programmer probably does not
know about this restriction, and may see do_something() as just the ticket needed to solve
some other problem… perhaps when interrupts are off.

Better code looks like:
long i;
void do_something(void){
 push interrupt state;
 disable_interrupts();
 i+=0x1234;
 pop interrupt state;
}

Shutting interrupts down does increase system latency, reducing its ability to respond to
external events in a timely manner. A kinder, gentler approach is to use a semaphore to
indicate when a resource is busy. Semaphores are simple on-off state indicators whose
processing is inherently atomic, often used as “in-use” flags to have routines idle when a
shared resource is not available.

Nearly every commercial real time operating system includes semaphores; if this is your
way of achieving reentrant code, by all means use an RTOS.

Don’t have an RTOS? Sometimes I see code that assigns an in-use flag to protect a
shared resource, like this:

while (in_use); //wait till resource free
in_use=TRUE; //set resource busy
Do non-reentrant stuff
in_use=FALSE; //set resource available

If some other routine has access to the resource it sets in_use true, cause this routine to
idle till in_use gets released. Seems elegant and simple… but it does not work. An
interrupt that occurs after the while statement will preempt execution. This routine feels it
now has exclusive access to the resource, yet hasn’t had a chance to set in_use true. Some
other routine can now get access to the resource.

Some processors have a test-and-set instruction, which acts like the in-use flag, but which
is interrupt-safe. It’ll always work. The instruction looks something like:

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Tset variable ; if (variable==0){
 ; variable=1;
 ; returns TRUE;}
 ; else {returns FALSE;}

If you’re not so lucky to have a test-and-set, try the following:

loop: mov al,0 ; 0 means “in use”
 xchg al,variable
 cmp al,0
 je loop ; loop if in use

If al=0, we swapped 0 with zero; nothing changed, but the code loops since someone else
is using the resource. If al=1, we put a 0 into the “in use” variable, marking the resource
as busy. We fall out of the loop, now having control of the resource. It’ll work every
time.

Yet More on Tools

The tool discussion that started a couple of issues ago is still generating a lot of response.
Thanks, all!

David Bley wrote: “I have a piece of software that I would like to recommend. It is not
free, but I use it everyday. It is a free-form database (records are note cards and you can
define fields or not) and its most powerful feature is the neural search. It will return
every card that contains the list of words that you type in the search field. I put
everything in it that I have trouble remembering and can always quickly access it. The
program is called Info-Select and I have been using it for many years. Their url is:
http://www.miclog.com/ .”

John Johnson sent: “I think this tip - very, very simple tip - is useful in tracking
development and debugging efforts. In the MPLAB IDE one can add a text file to the
project file list under "Other" files.

“The file is a mouse click away and can be used to collect or capture notes, ideas, and in
tracking development and debugging efforts which is a tedious activity that often falls in
the cracks. I would like to see this feature in all IDEs.”

Jobs!

Let me know if you’re hiring firmware or embedded designers. No recruiters please.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Silicon Engines is an established design engineering company specializing in embedded
control applications for automotive electronics, industrial electronics, and data
communications. We are currently expanding our product development activities.

Hardware engineer: Schematic capture, PCB layout, Protel experience a plus, Debugging
prototypes.

Software engineer: Windows CE, C, Visual Basic, C++, C#, GUI experience.

Engineers will work closely with clients from major corporations in development and
consulting. We are looking for energetic self-starters who enjoy a hard-working, informal
atmosphere. We offer competitive salary, benefits, great experience and learning
opportunities. Please mail, fax or e-mail your resume to Silicon Engines. Principals only,
please.

Silicon Engines, Ltd.
3550 W. Salt Creek Lane
Suite 105
Arlington Heights, IL 60005
Fax: 847-637-1185
E-mail: hr@siliconengines.net

Joke for the Week

Kathy Hohstadt sent, as she put it, a joke from the female point of view:

INSTALLING HUSBAND Version 1.0

Dear Tech Support,

Last year I upgraded from Boyfriend 5.0 to Husband 1.0, and noticed a distinct slow-
down in overall system performance - particularly in the Flower and Jewelry
applications, which operated flawlessly under Boyfriend 5.0.

In addition, Husband 1.0 uninstalled many other valuable programs, such as Romance 9.5
and Personal Attention 6.5, and then installed undesirable programs such as NFL 5.0,
MLB 3.0, NBA 4.0, NASCAR 4.2 and Golf Clubs 4.1. Conversation 8.0 no longer runs,
and Housecleaning 2.6 simply crashes the system. I've tried running Nagging 5.3 to fix
these problems, but to no avail.

What can I do?

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Signed,
Desperate

Dear Desperate:

First keep in mind, Boyfriend 5.0 is an Entertainment Package, while Husband 1.0 is an
Operating System.

Please enter the command: "http//www.I-Thought-You-Loved-Me.com" and try to
download Tears 6.2, and don't forget to install the Guilt 3.0 update.

If that application works as designed, Husband 1.0 should then automatically run the
applications Jewelry 2.0 and Flowers 3.5. But remember, overuse of the above
application can cause Husband 1.0 to default to Grumpy Silence 2.5, Happy Hour 7.0, or
Beer 6.1. Beer 6.1 is a very bad program that will download the Snoring Loudly Beta.

Whatever you do, DO NOT install Mother-in- law 1.0 (it runs a virus in the background,
that will eventually seize control of all your system resources).

Also, do not attempt to reinstall the Boyfriend 5.0 program. This is an unsupported
application and will crash Husband 1.0.

In summary, Husband 1.0 is a great program, but it does have limited memory, and
cannot learn new applications quickly. You might consider buying additional software to
improve memory and performance. We recommend Hot Food 3.0 and Lingerie 7.7.

About The Embedded Muse

The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

