

Copyright 2000 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 15The Embedded Muse 15
Editor: Jack Ganssle (jack@ganssle.com) January 30, 1998

Magic and DelaysMagic and Delays
Miguel Flores contributed a “Dumb Mistakes” piece (following) about the perils of using
“magic numbers”, in this case in delay routines. It’s scary how many times people get
into trouble with delays, and also with constants tuned to “make the damn thing work”. In
his case both conditions combine to form a disaster.

If you’ve been in this business for a while you’ve surely seen the perils of delay routines.
It’s almost amusing, in a bittersweet way, to watch programmers wrestle with delays,
tuning them to get the system working.

Magic numbers are all too often the shortcuts we use to dodge deep understanding of a
problem. We tune a delay, or a constant, coming up with a bit of what is truly magic just
to get it out the door.

If we, the people developing the system, don’t have a deep understanding for the reasons
behind EVERY DESIGN DECISION WE MAKE then we’re surely invoking magic, just
as much as the necromancer of old. Magic numbers are as effective as Tarot cards.

Remember the old adage: problems that magically go away have a habit of magically
reappearing.

Understand before coding. Magic has no place in embedded systems.

More Dumb MistakesMore Dumb Mistakes
From Miguel Flores

Here is one I had to solve recently that has a good lesson. The boards I mentioned above
have an ISA bus interface with the host PC. We have a message protocol for sending
messages between the host and the board's microcontroller. The traffic across the ISA
bus is controlled by a hardware register containing status bits for words coming and
going, and a ready bit. The ready bit is supposed to indicate that the board is ready to do
ISA bus data transfers and is tied to an I/O pin on the microcontroller. The board has an
interrupt for data coming, and one for data going.

Copyright 2000 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The host PC uses a Unix OS, and when the system is booted, a driver for our boards will
perform a hardware discovery routine to learn what hardware is installed on the ISA bus.
This routine consists of resetting the board, waiting a *magic* delay, then trying to send
a message to the board over the ISA bus. In theory, the ISA status register on the board
eliminates any timing or execution speed dependencies.

That's the theory. In practice, the I/O pins from the microcontroller are bi-directional.
After reset the I/O pins are tri-stated and act as inputs. This includes the ISA ready bit
I/O. It is pulled up to inactive so at reset it goes inactive (not ready for ISA I/O). The
original developer (in fairness, under considerable schedule pressure) got this whole
scheme to work with a little extra (read: magic) delay in the Unix driver after it resets the
board. Fine, ship it.

So, next, we make a new version of one of these boards, and eliminate a 15 MHz clock
circuit used to drive the microcontroller. Instead, we use an external 10 MHz clock
which is used elsewhere on the board anyway. The microcontroller runs slower, but it is
still fast enough to do its work. This should not affect the ISA bus messaging since it uses
that ISA bus status register. Well, by now you can guess that the Unix driver could not
find the slower board after reset.

Puzzled, I first supplied the board with a 15 MHz clock where the 10 MHz should go.
This would make the board run like it used to when it worked. OK, binary search. Try
12.5 MHz. Works. Try 11.5 MHz. Works. Try 10.5 MHz. Fails. Try 10.6 MHz.
Works. Oh no, a timing dependency. In comes the o-scope and some instrumented
firmware and printed copies of I/O drivers.

To make a long story short, the board's ISA ready register was being set within the first
couple dozen instructions after reset (about 50 microseconds), even though the firmware
was not ready until 5 milliseconds later (what with interrupt vectors and all). The magic
delay in the Unix driver was not long enough for the slower microcontroller clock speed,
so, the first word on the ISA bus after reset goes into the bit bucket. The board runs, but
Unix can't talk to it.

The assembly language start up routine for the firmware, copied from other projects,
assumed it knew the I/O configuration of the microcontroller, and set the direction of the
I/O pins without first initializing the data that would be driven on the output pins. This
included the ISA ready bit in the wrong state. This explained the need for the magic
Unix driver delay after reset.

The lesson here is to not make or impose any unnecessary assumptions about the
hardware or software. The start up firmware has nothing to do with any of the
microcontroller I/O's, so don't mess with them. And further, make sure the I/O data has

Copyright 2000 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

been initialized before driving the output pins. Good thing this equipment is not
connected to any mechanical stuff. Finally, if you need magic to make your system work
(like our magic delay in the Unix driver), then you don't fully understand how or why it
works.

Thought for the WeekThought for the Week
Write in C (Sing to the Beatle’s tune "Let it Be")

When I find my code in tons of trouble,
Friends and colleagues come to me,
Speaking words of wisdom:
"Write in C."

As the deadline fast approaches,
And bugs are all that I can see,
Somewhere, someone whispers:
"Write in C."

Write in C, Write in C,
Write in C, oh, Write in C.
LOGO's dead and buried,
Write in C.

I used to write a lot of FORTRAN,
For science it worked flawlessly.
Try using it for graphics!
Write in C.

If you've just spent nearly 30 hours,
Debugging some assembly,
Soon you will be glad to
Write in C.

Write in C, Write in C,
Write in C, yeah, Write in C.
BASIC's not the answer.
Write in C.

Write in C, Write in C
Write in C, oh, Write in C.

Copyright 2000 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Pascal won't quite cut it.
Write in C.

About The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

