

Copyright 2000 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 20The Embedded Muse 20
Editor: Jack Ganssle (jack@ganssle.com) April 9, 1998

Editor’s NotesEditor’s Notes
If your email in-box is like mine, you’re overwhelmed by mail from recruiters looking
for good people - or, ANY sort of people - for embedded work. A recent call caught me
short when a fellow wondered if The Embedded Muse or the seminar series was a front
for generating names to pass to recruiters. Perhaps it’s time to state my policy: the
mailing list is never sent to anyone under any circumstances. Further, commercial
messages are never accepted. On those rare occasions I discuss a particular product, it’s
because I have found the product to be interesting, and wish to share my thoughts. The
vendors are a wonderful source of information, but this forum is for rants and ramblings,
not commercials.

TEM 19 talked about the issue of Discipline in firmware engineering, which prompted a
lot of response from readers. Almost concurrently a couple of my articles in Embedded
Systems Programming magazine discussed why a firmware development standard is so
important. If you’d like a firmware standard, feel free to download one you can
customize for your own needs from www.ganssle.com/misc/ssm.zip. Once unzipped it’s
a Word document.

An Embedded History An Embedded History -- Part 2 Part 2
TEM issue 16 contained the start of a personal history of the embedded systems industry.
Response was so favorable here’s the next installment.

We left our story with the Intellec 8, an 8008-based development system that used
nothing more than an ASR-33 as both “mass storage” (via the paper tape), and console.

I worked for a company that built grain analyzers - a scanning monochrometer beamed a
spectrum of IR light at a sample of grain - wheat, barley, and the like. Detectors sampled
the reflected IR, amplified it by numerous orders of magnitude, and digitized the signal
before sending it to the 8008-based controller. The first computerized version had a 4k
program - unbelievably tiny by today’s standards, huge by those of the day. It took 16
ROMs (1702s, the only game in town at the time, had a whopping 256 byte capacity) to
store the 4k of code. No kidding.

Copyright 2000 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Even with the dawn of the microprocessor age our code was as riddled with bugs as today
- probably more so. The problems were much more tractable back then, as the limited
address space and exclusive use of assembly language eliminated any possibility of
building really complex systems, though we did have to implement all calculations in
floating point, and even ran a least squares regression to calibrate the system, all within
that 4k.

For debugging purposes, we cabled the Intellec 8’s bus back to our own computer’s
backplane, and let the Intellec’s CPU take charge of our peripherals. We edited,
assembled, and linked on that Intellec, and then loaded and debugged the code.

Building a program was a nightmare, though in those days having exclusive access to
ANY computer seemed pretty wonderful. Load the editor paper tape. Enter and edit the
program. Punch a tape of the source program (all assembly, of course). Load the
assembler tape. The assembler was a three pass nightmare - you had to run the source
tape through three times before it spit out a binary tape. Then, load the linker and each
binary tape.

The 4k program required 3 days to assemble and link. Three days. Needless to say, one
reassembled only rarely.

The Intellec had a simple monitor (much like a scaled down version of the PC’s DEBUG
utility) that let you set two software breakpoints. We’d load the binary and debug,
making changes to the machine code with each bug fix. The monitor didn’t have a mini-
assembler, so we quickly learned all of the machine codes for the 8008’s instruction set -
not much of a feat when you consider how limited that set was.

Sometimes we could patch right on top of the code. When the change was too big, we’d
patch a jump to a “patch area”, and hand assemble new code in there. With each change
we’d make a careful record on the source listings.

After a day of debugging, we’d have lots of changes (hey - we were kids at the time, with
no concept of software engineering!). We’d punch a tape of the current memory image
and go home, reloading it the next day to pick up from the same spot. Only infrequently
would we edit in changes and go through the pain of a total reassembly.

Development was incredibly slow. Every aspect of the process was buggy. At the time
even Intel didn’t understand how to program 1702s, so they’d frequently drop bits. We
spent months perfecting the algorithm in concert with them.

Despite the troubles things worked, and we delivered hundreds of units over a couple of
years. Time moved on and we later used better processors and algorithms; people left the
company, replaced with others not familiar with the older products.

Copyright 2000 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The original units used an iterative regression, which, if it didn’t converge within 20
minutes, displayed “HELP” in the seven segment LEDs. I’ll never forget some years later
a technician came in, ashen faced, and told me “I’ve been trying to repair this ancient
unit, and after I fiddled with it for a while it started displaying a panicked HELP
message!”

Thought for the WeekThought for the Week
SILICON VALLEY LINGO:

"percussive maintenance" - the fine art of whacking a device to get it working

"prairie dogging" - in companies where everyone has a cubicle -- something happens and
everyone pops up to look.

"blowing your buffer" - losing your train of thought.

"yuppie food coupons" - twenty dollar bills from an ATM.

"treeware" - manuals and documentation.

"beepilepsy" - afflicts those with vibrating pagers characterized by sudden spasms, goofy
facial expressions and loss of speech.

"cobweb" - a WWW site that never changes.

"high dome" - egghead, scientist, PhD.

"elvis year" - the peak year of popularity, as in "1993 was Barney the dinosaur's elvis
year".

"generica" - fast food joints, strip malls, sub-divisions, as in "we were so lost in generica
that I couldn't remember what city it was".

"irritainment" - annoying but you can't stop watching, e.g. the O.J. trial.

"meatspace" - the physical world (as opposed to the virtual), also "carbon community".

"silliwood" also "hollywired" - the coming convergence of movies, interactive TV and
computers

Copyright 2000 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

About The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

