

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 54The Embedded Muse 54The Embedded Muse 54The Embedded Muse 54
Editor: Jack Ganssle (jack@ganssle.com) October 30, 2000

Measuring LatencyMeasuring LatencyMeasuring LatencyMeasuring Latency
CPU vendors define interrupt latency in terms of the longest non-interruptible instruction.
I figure this is a meaningless definition; after all, what we developers really care about is
the time between when the interrupt occurs and when the ISR (Interrupt Service Routine)
starts. Usually the delays are more a factor of how we write the firmware than raw
processor capabilities. Code that spends lots of time with interrupts disabled will have
long latencies.

There are a number of ways to measure this, but here’s a novel and rather cool approach.
You’ll need a spare timer and just a bit of code.

Start the timer counting up, and set it to interrupt when the count overflows to zero.

The timer ISR should be dead simple with as little overhead as possible; it’s best coded in
assembly language so you can minimize the number of register saves (so many compilers
push *everything* inside C-coded ISRs).

Immediately read the timer count register and sum this value into a long variable.
Increment a counter. Then clean up and return.

Note that, though the timer read zero when it issued the interrupt, it continues to count
before the ISR starts. The value we read inside the ISR is the system’s latency (less some
ISR overhead).

Figure the raw overhead of this ISR by counting T-states (instruction times) before the
timer read happens. Now just run your application for a while, and then stop the program
with a debugger.

Average system latency is the long variable (normalized to microseconds), divided by the
number of iterations of the ISR, with the ISR overhead removed.

Run this experiment on MS-DOS; you may see latencies ranging into the tens of
milliseconds!

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Thought for the WeekThought for the WeekThought for the WeekThought for the Week
Your friend might be a hacker if..........

• Everyone who ticks him or her off gets a $26,000 phone bill.
• Has won the Publisher's Clearing House Sweepstakes three years running.
• When asked for their phone number, they give it in hex.
• Seems strangely calm whenever the office LAN goes down.
• Somehow gets HBO on their PC at work.
• Mumbled, "Oh, puh-leeeez!" 295 times during the movie "The Net."
• Massive 401k contribution made in half-cent increments.
• Their video dating profile lists "public-key encryption" among turn-ons.
• Instead of the "Welcome" voice on AOL, you overhear, "Good Morning,

Mr./Mrs. President."
• You hear them murmur, "Let's see you use that VISA card now, Professor "I-

Don't-Give-A's-In-Computer-Science!"

About The Embedded MuseAbout The Embedded MuseAbout The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

