

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 55The Embedded Muse 55The Embedded Muse 55The Embedded Muse 55
Editor: Jack Ganssle (jack@ganssle.com) November 8, 2000

Tires That are Too SmartTires That are Too SmartTires That are Too SmartTires That are Too Smart
From: http://dailynews.yahoo.com/h/nm/20001023/tc/tires_phones_dc_1.html

Reuters reports that in Finland work is afoot to embed chips inside of your car’s tires.
When the pressure falls too low they’ll call you on your cell phone.

Technology run amok? Can I block calls from my tires? I’ll have to get call waiting in
case the tires want to break in on another conversation!

More on Measuring LatencyMore on Measuring LatencyMore on Measuring LatencyMore on Measuring Latency
Gary Bergstrom wrote:
The other very interesting thing one could do with your counter is to log the time when
the ISR finished. e.g. Read the hardware timer as the last thing you do. This catches
overflows, and sometimes the higher priority interrupt that interrupts the current
interrupt.

And Alf Katz commented:
Of course, you're right, but of much more interest to most embedded programmers is the
longest system latency. This can easily be found by keeping the highest overrun reached
in another variable, and updating only when a higher one is found. Of course you could
go overboard & collect means & standard deviations of the latency time, but you
wouldn't want to do it in an interrupt - and the longest latency is *usually* the most
important metric.

Finally, from Dean TerHaar:
I use a similar approach to time the duration of an ISR. I define a struct of two variables:
TimerIn and TimerOut, and then declare a global array of this struct. On entry to the ISR
I read the system timer and store it in Array[i].TimerIn and on exit from the ISR I read
the system timer again and store it in Array[i].TimerOut. I also have a control variable
that I can set dynamically to enable/disable this ISR duration monitor. After I execute a
sample run of the program (in real time), I'm use these timer values to calculate the min,

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

max, and average durations of the ISR and display a report. (without the aid of a
debugger or oscilloscope!)

The routine that calculates the ISR time also calculates the overhead of the duration test
(i.e. the time it takes to read the system timer and store its value). It subtracts this
overhead (or bias) from the calculated ISR time to compensate for the additional time it
takes to perform the test. This routine also normalizes the result in microseconds and
handles cases where the system timer rolled over during the execution of the ISR under
test.

This test, as it is written in C, however, does not account for the overhead of the ISR
under test (working register pushes and pops), but this fixed time could be calculated
manually and included into the final result returned by the routine that calculates the ISR
execution time.

Thought for the WeekThought for the WeekThought for the WeekThought for the Week
A tourist walked into a pet shop and was looking at
the animals on display. While he was there, another
customer walked in and said to the shop keeper,
"I'll have a C monkey please".

The shopkeeper nodded, went over to a cage at the side
of the shop and took out a monkey. He fit a collar and
leash, handed it to the customer, saying, "That'll be
$5000." The customer paid and walked out with his
monkey.

Startled, the tourist went over to the shopkeeper and
said, "That was a very expensive monkey. Most of them
are only a few hundred dollars. Why did it cost so
much?"

The shopkeeper answered, "Ah, that monkey can program
in C - very fast, tight code, no bugs, well worth the
money."

The tourist looked at the monkey in another cage.
"That one's even more expensive - $10,000! What does
it do?"

"Oh, that one's a C++ monkey; it can manage

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

object-oriented programming, Visual C++, even some
Java. All the really useful stuff," said the
shopkeeper.

The tourist looked around for a little longer and saw
a third monkey in a cage of its own. The price tag
around its neck read $50,000. He gasped to the
shopkeeper, "That one costs more than all the others
put together! What on earth does it do?"

The shopkeeper replied, "Well, I haven't actually seen
it do anything, but it says it's a consultant."

About The Embedded MuseAbout The Embedded MuseAbout The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

