

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 64The Embedded Muse 64The Embedded Muse 64The Embedded Muse 64
Editor: Jack Ganssle (jack@ganssle.com) August 25, 2001

An Interesting BookAn Interesting BookAn Interesting BookAn Interesting Book
Software engineering is a field that seems to proceed in fits and starts. Most of us write
code the same way we did back in college, though occasionally a new approach does
come along. I’d count Fagin Inspections as one, OOP, another.

In the last couple of years, though, Kent Beck’s Extreme Programming (XP) has surfaced
as another interesting approach to writing code. And *code* is the operative word. XP
starts with the requirements in the form of user stories. The customers deliver and
prioritize the user stories. The developers analyze the stories and write tests for them.

Everything ends with code. The code is developed in pairs of developers to increase
quality. Quality code is the goal, and that’s obtained by constantly rewriting it
(refactoring in XP lingo), pair programming so two pairs of eyes look at it all, and
constant testing/integration. The output is clean, clear code that fulfills the customer’s
wishes, with no extra frills or hooks for extensibility.

One book that does a great job of describing XP is Kent Beck’s Extreme Programming
Explained (ISBN 201616416), a slender but complete $29.95 volume.

I sometimes find these sorts of books tiresome. An evangelist pushes what some might
see as a wild-eyed new way to create software, while the evening wears on and my
interest flags. This one is different. Between the writing style and the quite fascinating
ideas behind XP I found the book compelling.

XP requires a customer who lives on-site, constantly providing feedback to the
development team. A very cool idea. Practical? I have doubts, especially in the embedded
world where so many of us build products used by thousands of disparate customers. But
a cool idea nonetheless.

XP demands conformance to a coding standard. Excellent! The pair programming I’d
find a little too “in your face”, but is an interesting concept that builds on the often-
proven benefits of code inspections, though in my experience two pairs of eyes are not
enough.

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

XP teams focus on validation of the software at all times. Programmers develop software
by writing tests first, then software that fulfills the requirements reflected in the tests.
Customers provide acceptance tests that enable them to be certain that the features they
need are provided. There’s no such thing as a big integration phase. This is the XP
practice I find most brilliant. Even if you’re not going to pursue XP, study it and take the
testing ideas to heart.

Constant testing plays into the “frequent releases” XP requirement. Don’t build a big
thing and then dump it on a customer. Release portions of the project often to get
feedback. This is much like the spiral development model, which seems to offer the only
practical hope to meet schedules. Of course, neither spiral nor XP development promises
that we’ll know a real delivery time at the project’s outset; instead, we evolve the product
and schedule together. Most managers can’t accept that.

Another interesting book is Extreme Programming Examined by Giancarlo Succi,
Michele Marchesi (ISBN 0201710404). It’s much less readable, being an uneven
collection of talks presented at a conference. The most interesting papers talk about
failures implementing XP.

Finally, I’d imagine most of us would quickly buy in to XP’s belief in 40 hour work
weeks. Tired programmers make mistakes. Go home!

Thought for the WeekThought for the WeekThought for the WeekThought for the Week
To balance the previous words about writing great code, do check out “How to Write
Unmaintainable Code”, by Roedy Green with contributions from many others, at
http://www.mindprod.com/unmain.html.

One of my favorites: “Since the computer ignores comments and documentation, you can
lie outrageously and do everything in your power to befuddle the poor maintenance
programmer.”

About The Embedded MuseAbout The Embedded MuseAbout The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

