

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 66The Embedded Muse 66The Embedded Muse 66The Embedded Muse 66
Editor: Jack Ganssle (jack@ganssle.com) October 1, 2001

A Dirty WordA Dirty WordA Dirty WordA Dirty Word
Yet another email arrived from a frustrated developer last week about how their project
schedule collapsed, leading to the abandonment of the project and the likely firing of a
few people.

A recent survey showed that 17% of all embedded projects are cancelled, always after
months of work and accompanying schedule slippages.

Disaster comes from a number of sources. One that’s all too common is deferring test till
lots of the system is built. It’s easy and exciting to crank code, lots and lots of it. Maybe
we do some unit testing to insure functions work as expected.

But too many schedules and project plans include a dirty word, one whose use is a sure
indicator of problems. “Integration” is the word, and it’s worse than any four letter
expletive. For when our schedules contain this as a milestone we’re doomed.

“Integration” is when we combine parts of the system for the first time (perhaps the
hardware and the software), and is nearly always a disaster. It’s when the hard part starts.
It’s the first time we really see how badly things are going. Prior to this point it’s pretty
easy to convince ourselves that the project is on-schedule and all is well. At “integration”
time, though, for the first time we’re engaged in the very difficult part of making
everything work together.

I always advise developers to find a way to start testing the system – as a system – as
early as possible. Don’t defer system-wide tests till some arbitrary “integration” point late
in the schedule.

The problem, of course, is that firmware development necessarily lags the hardware.
How can we do real testing till the hardware is ready? That will be late (it always is), so
our testing is even later.

Remember that engineering is not so much about building projects as it is about solving
problems. We KNOW the hardware will be late; even it it’s not, it’s never early enough
in the cycle to allow is to start “integration” up front. So, before writing code, before
finalizing the schedule, recognize that you’ll need a decent test platform and find a way
to get one. Early.

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Clearly, there are some systems that simply must have an integration phase. If you build
F-16 avionics it’s awfully hard for each developer to have their own F-16… though it
sure would be cool!

Some ideas:
Buy an evaluation board from the CPU vendor. These always have at least a minimal
development system. You can write code, download, and test it. In many cases you can
test and awful lot of the system without your unique product’s I/O.
Use a simulator. Some of these have gotten really good. I was running one for a 68HC11
recently that was breathtaking. Sure, you can’t simulate real time events, but it’s at least
possible to test quite a bit of the system.
Cross develop on a PC. Write your code in a totally ANSI-compliant manner so it can run
on the desktop environment. One friend enables compile-time switches to use the PC’s
I/O (timers, serial, etc) in place of those in the embedded system. Again, much testing is
possible, without a shred of target hardware ready.
Insist, while creating the schedule (long before problems surface) that the hardware group
provide prototypes of risky I/O or other portions of the product. Maybe these are nothing
more than wire-wrapped boards that plug into the PC’s parallel or serial port.

The moral is to test early and often.

A Very Cool AnimationA Very Cool AnimationA Very Cool AnimationA Very Cool Animation
Check out http://www.ucos-ii.com for Jean LaBrosse’s awesome new Flash animation of
how context switching works in an x86-based RTOS. Fancy graphics have finally come
to the embedded world!

Thought for the WeekThought for the WeekThought for the WeekThought for the Week
NOTE: Failure is not an option!

It comes bundled with the software…

About The Embedded MuseAbout The Embedded MuseAbout The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

