

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 71The Embedded Muse 71The Embedded Muse 71The Embedded Muse 71
Editor: Jack Ganssle (jack@ganssle.com) February 22, 2002

ESD and FirmwareESD and FirmwareESD and FirmwareESD and Firmware
Long time friend and well-known firmware consultant Scott Rosenthal (www.sltf.com)
was working with TI’s MSP430 microcontroller recently and ran into some interesting
problems.

Electrostatic Discharges (ESD) are those high voltage low amperage “zaps” that happen
when we shuffle our feet along a carpet and then touch something metallic. Since
practically everything is now electronic, regulatory bodies require that most products be
resistant to ESD discharges. Our customers would be pretty upset if a casual static zap
destroyed their high tech device! Silicon geometries are now so small that tens of volts
can destroy the transistors… yet an ESD pulse is often tens of thousands of volts.

Careful grounding and a well-designed case will minimize most of these problems. But
it’s tough to eliminate it altogether; often some energy will couple into your circuits, no
matter how well shielded.

Scott found that the MSP430’s I/O pins, when subjected to just a bit of ESD, randomly
change state. This is a pretty cool MPU, since every peripheral bit can be an input or
output port, or even an interrupt input. He watched the ESD testing lab’s experiments
change bits from output ports to interrupt inputs, leading to erroneous and erratic
interrupts. Though the parts survived the ESD events, the mode changes could horribly
crash the firmware, a very bad thing for critical applications.

An A/D converter also suffered from temporary brain damage when zapped.

The solution was software that monitors the settings of all I/O pins and the A/D’s setup
and calibration. Additional code rejected spurious interrupts.

How reliable do our systems have to be? If we have to survive an ESD discharge without
crashing does the entire unit have to live in a Faraday shield, one that blocks out all RF
and ESD energy? If a system has external inputs they may be hard to impossible to
completely protect. Optical isolators help, but are an expensive addition to a low cost
product.

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

By adding software that monitors the hardware’s health Scott cured the problem. But he
raises an interesting philosophical issue: can we no longer assume the hardware is
reliable? I wrote about unreliable hardware in Embedded Systems Programming this
month (http://embedded.com/story/OEG20020125S0104), but ESD is another source of
erratic problems.

Watchdog timers have always been our last-ditch defense against crashing code. If you’re
worried about transient hardware issues, as it’s beginning to seem we must, a well-
implemented watchdog is essential. If we cannot trust the hardware, that suggests the
watchdog must hit the CPU’s reset input (not an interrupt), since only reset is guaranteed
to cure the processor of all weird modes.

Some safety critical code doesn’t even assume that RAM and ROM work; the systems
continuously run RAM and ROM tests in the background, looking for bit flips or part
failures.

High reliability systems will benefit from a healthy dose of paranoia. Assume everything
breaks and nothing is reliable. I saw a system recently where 80% of the code was for
exception handling and hardware monitoring. Think of it – for every line of code that
implemented the application the developers wrote four lines of paranoia-code. The costs
are astronomical, though probably necessary for some systems. I suspect that as time
goes on, as our software and hardware complexity increases, this sort of defensive
programming will become the norm.

Thought for the WeekThought for the WeekThought for the WeekThought for the Week
Thanks to Laurence Marks who found this.

System Crash (to the tune of "The Monster Mash")

I was working in the lab, late one night
When my eyes beheld an eerie sight,
Some smoke from our VAX began to rise
And suddenly, to my surprise...

[chorus]
(There was a crash) There was a system crash
(A mighty crash) I heard the disk heads smash
(A system crash) It came down in a flash
(There was a crash) A fatal system crash

The lab manager then appeared from his room,

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Said "I don't want to be a prophet of doom,
But we had one like this just the other day
Which blew up 4 megs and the SBA"

[chorus]

The system had been booted,
diagnostics all run through,
When a power flux made it run amuck,
then SCOTTY and IRVING blew too

So we'd lost all our VAXES in less than one night
When a VP came in and said "hey, that's all right,
I'll loan you a Venus - here's what to do
When you call up Support, tell them Gordon sent you..."

[chorus]

About The Embedded MuseAbout The Embedded MuseAbout The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

