

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 72The Embedded Muse 72The Embedded Muse 72The Embedded Muse 72
Editor: Jack Ganssle (jack@ganssle.com) March 22, 2002

ESD and Firmware ESD and Firmware ESD and Firmware ESD and Firmware –––– Follow Follow Follow Follow----upupupup
In the last issue of the Muse I wrote about electrostatic discharge making processors do
very strange things. A number of folks wrote in with other information.

Dana DeMeo wrote:
At Symbol Technologies, all our products must meet 15kV/20kV ESD levels. We install
ferrite beads, resistors and/or caps on all connectors. We install transorbs on all external
connectors and contacts in addition. We also ensure our mechanical design does not
allow ESD to sneak through seams in the plastic and hit the PCB directly. Finally, we
use MANY ground planes in the PCB to avoid indirect (radiated) ESD discharges (the
product is placed on a metal table and the table is hit with ESD, produces strong local
fields).

Dana also send along some info about a very interesting TI watchdog timer. Their
TPS3813 device is a “windowing” watchdog: that means you can configure a time
window in which the supervised processor must kick the dog to prevent resets. Kick it too
slowly or too fast and the device resets the CPU. That reduces the chances that a partly-
crashed program will just by luck (or lack of luck) continue to service the WDT.

Mike Perkins wrote:
In about 1976 when I was working with the 8008, we noticed ESD-susceptibility
problems. We fixed them, painfully. Twenty-five years later, colleges and universities
still don't teach this ESD stuff. Until they do, we can expect new engineers to learn about
ESD the hard way, same as when microelectronics was brand-new. I just hope I'm not
operating the machine in which ESD protection (software and hardware) was omitted due
to simple ignorance.

It would seem that most young engineers still write code as if everything will stay sane -
their trust in predictability is immense. But it's not their fault. No one in school tells them
about it. Some of my favorite war stories have "design-for-robustness" endings to them,
but even then they don't "get it" for a long time. It still takes us grizzled-engineers to
break the ESD-susceptibility chain It would seem that what we don't teach our youngsters
sticks with them at least as well as what we do teach them.

mailto:jack@ganssle.com

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Brad Stevens commented:
There is a larger scourge out there, Electrical Fast Transients. I've spent most of the past
three years "coding around" hardware deficiencies that let fast transients into a system
when it switches reactive loads. I've seen the internal registers in a PIC go completely
random, Dallas Ramified RTC's latchup, and program counters go off to infinity and
beyond. The problem is insidious, pervasive, and yet is still not recognized as a major
design issue with systems that switch reactive loads. Connect the output of an IEC 1000
4-4 test generator to the contacts of virtually any system, raise the voltage enough, and
see a system become an Uncertainty Generator. I think that in two years, as
microcontroller based products switch more and more reactive loads, as dies shrink ever
smaller, cost cutting eliminates opto isolation, and more and more rookies join the
workforce, embedded systems will get a very bloody nose in the publics eye.

James Thayer said:
Watchdog timers have always been our last-ditch defense against crashing code. If you're
worried about transient hardware issues, as it's beginning to seem we must, a well-
implemented watchdog is essential. If we cannot trust the hardware, that suggests the
watchdog must hit the CPU's reset input (not an interrupt), since only reset is guaranteed
to cure the processor of all weird modes.

The key phrase here is "well-implemented". It's no trivial thing to achieve, especially
when multi-thread applications exist. I'm sure that you've seen systems that are, for all
intents and purposes, out in the weeds -- and yet, there's still some chunk of code
scratching the watchdog behind it's ears and keeping it's tail wagging.

On the other end of the spectrum, I've recently experienced a piece of hardware whose
watchdog was designed long before the needs of the software/system were fully
known/understood. The HW engineers, fully aware of the reliability of most software,
designed it to be impervious to anything that the SW could dish out. Unfortunately, their
design worked too well. Whenever this card is pushed into an overload situation, the
watchdog barks and the hardware resets. There was no way, short of redesigning the HW
or radically over-provisioning the system, to prevent this from occurring...

The really annoying thing about this, is that in this case, without the watchdog, the
system design was such that it would inherently shed load gracefully until normal
operations are restored. When the watchdog barks, on the other hand, there is a greater
chance of pushing neighbor cards into overload as they pick up the slack (and having
their watchdogs bark, etc, etc.)

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The point of bringing this up is not to knock the concept of using watchdogs, but rather to
point out that in our paranoia, we must still take a systems view of our designs lest we
make things worse instead of better.

Brian Harden wrote:
The resistance or otherwise of microcontroller chip pins to induced current has been a
hobby horse of mine for many years. This is a "real world" problem that many
manufacturers seem to ignore. Electrical specs glibly state that any pin must be held
within 0.3 V of the appropriate supply rail, but how is that actually achieved in the real
world?!

Some manufacturers have decent clamping diodes that will soak up current without
allowing the chip to be disturbed. Microchip, for example, spec all the inputs to the PIC
range of microcontrollers to be able to soak up 20 mA (quote from a PIC specification
"Input clamp current, IIK (VI < 0 or VI > VDD) = ± 20 mA") so a simple series resistor
will provide complete protection . Other manufacturers are not so user friendly - my
experience shows the Japanese to be the worst offenders, but the spec for the TI MSP430
isn't much better.

Engineers must be aware of these problems and design their circuits appropriately. If the
restrictions are found to be impractical then a different device must be chosen.

Thought for the WeekThought for the WeekThought for the WeekThought for the Week
With Apologies to JRR Tolkien:

One OS to rule them all, One OS to find them,
One OS to bring them all, and in the Darkness bind them,
In the land of Redmond, where the Sales Reps lie.

About The Embedded MuseAbout The Embedded MuseAbout The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

mailto:info@ganssle.com

	Editor: Jack Ganssle (jack@ganssle.com) March 22, 2002
	ESD and Firmware – Follow-up
	Thought for the Week
	About The Embedded Muse

