

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 86
Editor: Jack Ganssle (jack@ganssle.com) October 20, 2003

You may redistribute this newsletter for noncommercial purposes. For commercial use
contact info@ganssle.com.

EDITOR: Jack Ganssle, jack@ganssle.com

CONTENTS:
- Editor’s Notes
- Taming C
- Jobs
- Joke for the Week
- About The Embedded Muse

Editor’s Notes

I’ll present my Better Firmware Faster seminar December 5 in San Jose, the last public
class this year. See http://www.ganssle.com/classes.htm for more details. This is the only
non-vendor class around that shows practical, hard-hitting ways to get your products out
much faster with fewer bugs. The crummy economy is putting pressure on all
developers– come and learn the tricks you need to be more efficient.

There’s also cheap fly- in options listed there for folks coming from out-of-town.

I often do this seminar on-site, for companies with a dozen or more embedded folks
who’d like to learn more efficient ways to build firmware. See
http://www.ganssle.com/onsite.htm.

Rob Wehrli has a free port of uClinux (Linux for Microcontrollers) available for
download. This port currently runs a 2.4.20 uClinux kernel version on the Hitachi H8S-
2674R "EDOSK" board. The board is available for around $200 from Avnet, Reptron
and Nu Horizons, but he has several to give away to anyone interested in actively
developing GPL code for it. See http://www.azpower.com/H8-uClinux for more details.

Perri Matthews had an interesting twist on my watchdog comments. He wrote: “About 15
years ago or so, when I was a fairly young software engineer, I worked on an 8086-based
embedded system where the electrical designer thought it would be a good idea to tie the
watchdog strobe line to I/O-space reads & writes. He figured that since we would be
doing inputs and outputs to I/O-mapped devices fairly often, this would keep the

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

watchdog happy and he could save an extra wire. At the time I didn't think much of it,
until I had to figure out why the watchdog wasn't helping us at all when the program
would crash. The reason was that we were doing I/O accesses in our interrupt service
routines! So even though the foreground code was hosed, the interrupts were still
working and keeping the watchdog happy.

”Now I always use a more elaborate two-level scheme for servicing a WDT. Since I
don't like to sprinkle watchdog accesses all over my code, and I don't like having to make
sure that I count cycles in my code so that I don't inadvertently add too many lines
between WDT services, I have an interrupt service routine that services the WDT at a
high enough rate, but only if a flag has been set by the foreground code. If the flag is not
set, the ISR will continue to service the WDT for only about 10 seconds (or whatever
time the designer chooses), at which time it will quit servicing the WDT and allow it to
reset the CPU. The ISR clears the flag whenever it detects the flag is set. So all I need to
do is set the flag periodically in my foreground code, usually at only one place in the
main executive loop, or in other long loops such as polling for serial input, etc. Then if
the foreground code gets stupid, it will stop setting the flag, and the background will
eventually give up and let the WDT do its thing to bring the system back on track.”

Taming C

In my most recent Embedded Pulse article
(http://embedded.com/showArticle.jhtml?articleID=15306089) I bashed the C language.
As I write this the replies – both positive and negative – are still flooding in.

Don’t get me wrong – I think C is a fantastic language, one that can lead to wonderful
products. You can’t beat it for bit twiddling and getting close to the hardware.

But C does little to force us to build good code; it’s very easily abused.

I read a lot of code – a LOT of code – and the sad fact is that little of what goes into
modern products is well-written. You can almost see the heroics that went into beating
the code into submission.

Use all of C’s intricacies with abandon and your firmware is going to be a mess. As
professionals we must tame it, using discipline, wisdom, the experience of others, and the
appropriate tools.

Develop code without Lint, for instance, and you’re flirting with suicide. Lint is a syntax
checker on steroids. Though most of its warnings are nitpicks, it’s truly astonishing how
many real flaws Lint will uncover.

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Write firmware that generates no (or few) Lint warnings. That means changing the way
we produce code, using explicit casts, more parenthesis than is rigidly needed, and the
like. But if a sophisticated syntax-checker is confused, your code is probably suspect.

There are plenty of Lints around. My two favorites are splint (http://www.splint.org/),
which is free, and PC-Lint (http://www.gimpel.com/), which is not.

For those new to the idea, Ian Darwin wrote “the” book on the subject (Checking C
Programs with Lint, http://www.oreilly.com/catalog/lint/). But most of us will do fine
using just Lint’s user manual.

Isn’t it ironic that this book was written by Mr. Darwin – I’d argue that not using Lint is a
sure way to find your career become extinct!

Also consider using tools to check the quality and complexity of your code. Oakwood
Computing’s (http://www.oakcomp.co.uk/) Safer C Toolset analyzes source files to look
for code that’s likely to be wrong.

Programming Research’s (http://www.programmingresearch.com) QA-C tool applies
various metrics to measure a C file’s complexity; if the code is too complicated it’s rarely
reliable.

Both companies also produce tools that check C against the MISRA
(http://www.misra.org.uk/) standards, a set of guidelines that promotes better C code. A
very intriguing alternative way to check source against this standard comes from The
Mathworks. This paper
(http://www.mathworks.com/company/digest/july03/checking_code.shtml) shows how to
configure MatLab as a MISRA compliance-checker.

(I reviewed MISRA in Muse 52 - http://www.ganssle.com/tem/tem52.pdf).

Also see http://www.plethora.net/~seebs/c/10com.html for the 10 Commandments for C
Programmers.

Jobs

Dynamic Telecommunications in Germantown, MD is hiring a number of people,
including:
- Quality/Manufacturing Engineer
- Senior Software Design Engineer
- Electrical Engineer
- DSP Engineer

Copyright 2002 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

- Program Manager
- Systems Engineer (Technical Product Manager)

Information on all openings can be found at: http://www.dynatele.com/careers.htm.

Let me know if you’re hiring firmware or embedded designers. I’ll continue to run ads
for embedded developers as long as the job situation stays in the dumper.

Joke for the Week

Colin Walls wrote:

An optimist thinks the glass is half full.
A pessimist thinks a glass is half empty.
The software engineer thinks the glass is twice as big as it needs to be. [Or, rather, the
buffer overflow protection is rather over done].

About The Embedded Muse

The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

