
Building Applications
with JBuilder®

VERSION 8

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

JBuilder®

Refer to the file deploy.html located in the redist directory of your JBuilder product for a complete list of files that
you can distribute in accordance with the JBuilder License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

COPYRIGHT © 1997–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your JBuilder product CD.

Printed in the U.S.A.

JBE0080WW21001bajb 7E10R1002
0203040506-9 8 7 6 5 4 3 2 1
PDF

i

Chapter 1
Introduction 1-1
Documentation conventions 1-4
Developer support and resources 1-6

Contacting Borland Technical Support. . . . 1-6
Online resources 1-6
World Wide Web 1-6
Borland newsgroups 1-7
Usenet newsgroups 1-7
Reporting bugs 1-7

Chapter 2
Creating and managing projects 2-1
Creating a new project. 2-2

Creating a new project with the Project
wizard . 2-2

Selecting project name and template . . . 2-2
Setting project paths 2-4
Setting general project settings 2-4

Creating a project from existing files 2-7
Selecting the source directory and

name for your new JBuilder project 2-8
Displaying files. 2-9

Switching between files 2-9
Saving projects2-10
Opening an existing project. 2-10
Creating a new Java source file 2-11
Managing projects 2-13

Adding to a project 2-13
Adding folders 2-13
Adding files and packages. 2-14

Removing material from a project 2-14
Deleting material 2-15
Opening a file outside of a project 2-15
Renaming projects and files 2-15
Adding a new directory view 2-16

Setting project properties 2-17
Setting the JDK 2-19
Editing the JDK2-19

Debugging with -classic 2-20
Setting the JDK in SE and Enterprise . . . 2-20

Configuring JDKs 2-22
Setting paths for required libraries2-22

Working with multiple projects 2-23
Switching between projects 2-23
Saving multiple projects 2-24

More information about projects 2-24

Chapter 3
Working with project groups 3-1
Creating project groups 3-1
Adding and removing projects from

project groups 3-3
Navigating project groups 3-4
Adding projects as required libraries 3-4

Chapter 4
Managing paths 4-1
Working with libraries 4-1

Adding and configuring libraries 4-2
Editing libraries 4-5
Adding projects as required libraries 4-5
Display of library lists 4-6

Packages . 4-6
.java file location = source path +

package path 4-7
.class file location = output path +

package path 4-8
Using packages in JBuilder. 4-8
Package naming guidelines 4-9

How JBuilder constructs paths 4-9
Source path. 4-10
Output path 4-10
Class path 4-10
Browse path 4-11
Doc path . 4-11
Backup path 4-12
Working directory 4-12

Where are my files? 4-12
How JBuilder finds files when you

drill down 4-13
How JBuilder finds files when you

compile . 4-13
How JBuilder finds class files when

you run or debug 4-13

Contents

ii

Chapter 5
Compiling Java programs 5-1
Smart dependencies checking 5-2
Compiling a program 5-3

JBuilder build menus 5-3
Building projects with the Run

command 5-4
Syntax errors and error messages 5-4
Compile problems when opening

projects. 5-5
Checking for package/directory

correspondence 5-6
Setting compiler options 5-6

Specifying a compiler 5-8
Setting additional compiler and build

options . 5-8
Setting the output path 5-8
Compiling projects within a project group . . . 5-9
Compiling from the command line 5-9

bmj (Borland Make for Java) 5-10
bcj (Borland Compiler for Java) 5-10
Building a project from the command

line . 5-10
Switching between the command line

and IDE . 5-11

Chapter 6
Building Java programs 6-1
The JBuilder build system. 6-1

Build system terms 6-2
Build phases 6-2

The Make command 6-3
The Rebuild command 6-4
The Clean command 6-5

Building project groups 6-5
Specifying the build order for a

project group 6-6
Building a project group 6-6
Adding project group build targets to

the Project menu 6-7
Building with external Ant files 6-7

Adding Ant build files to projects 6-8
Adding Ant files with the Ant wizard . . 6-9
Adding Ant files manually 6-9

Creating and editing Ant build files 6-10

Importing existing Ant projects 6-10
Building Ant projects 6-11

Specifying the JDK. 6-12
Building Ant projects with the Run

command 6-12
Setting Ant properties. 6-12

Ant options 6-14
Adding custom Ant libraries. 6-14

Building SQLJ files 6-15
Creating external build tasks 6-16

External Build Task wizard. 6-16
Building external tasks 6-17
Setting external build task properties 6-17

Configuring the Project menu 6-18
Configuring the Project menu for

project groups 6-19
Automatic source packages 6-21
Filtering packages. 6-23

Excluding packages 6-24
Including packages 6-25

Selective resource copying 6-25
Individual resource properties 6-25

File-specific options 6-26
Project-wide options. 6-27
Adding unrecognized file types as

generic resource files. 6-27
Project Properties Resource page 6-28

Chapter 7
Running Java programs 7-1
Running program files 7-1
Running web files. 7-2
Running projects 7-3

Using the Run command 7-3
Running grouped projects 7-5
Running OpenTools 7-5

Setting runtime configurations 7-6
Creating a runtime configuration 7-8
Editing a runtime configuration 7-10
Build Targets 7-10
Runtime configuration types. 7-12

Running programs from the command
line . 7-13

Running a deployed program from the
command line 7-13

iii

Chapter 8
Debugging Java programs 8-1
Types of errors 8-2

Runtime errors 8-2
Logic errors 8-2

Overview of the debugging process 8-3
Creating a runtime configuration. 8-3
Compiling the project with symbolic

debug information 8-4
Starting the debugger 8-6

Starting the debugger with the
-classic option 8-7

Running under the debugger’s control . . . 8-7
Pausing program execution 8-8
Ending a debugging session 8-8

The debugger user interface 8-8
Debugging sessions 8-9
Debugger views 8-10

Console output, input, and errors
view . 8-11

Classes with tracing disabled view 8-12
Data and code breakpoints view 8-13
Threads, call stacks, and data view 8-15
Data watches view 8-18
Loaded classes and static data view . . .8-20
Synchronization monitors view8-22

Debugger toolbar 8-23
Debugger shortcut keys 8-25
ExpressionInsight 8-25
Tool tips . 8-26

Debugging non-Java source 8-27
Controlling program execution. 8-27

Running and suspending your program . . 8-27
Resetting the program8-28
The execution point 8-28

Setting the execution point 8-29
Managing threads 8-30

Using the split pane 8-30
Displaying only the current thread 8-31
Displaying the top stack frame 8-31
Choosing the thread to step into 8-31
Keeping a thread suspended 8-31
Detecting deadlock states 8-32

Moving through code 8-32
Stepping into a method call 8-33
Stepping over a method call 8-33

Stepping out of a method 8-34
Using Smart Step. 8-34

Running to a breakpoint 8-35
Running to the end of a method 8-36
Running to the cursor location. 8-36
Viewing method calls 8-36
Locating a method call 8-37
Controlling which classes to trace into . . . 8-37

Tracing into classes with no
source available 8-39

Breakpoints and tracing disabled
settings 8-40

Using breakpoints. 8-40
Setting breakpoints 8-41

Setting a line breakpoint 8-41
Setting an exception breakpoint 8-43
Setting a class breakpoint 8-45
Setting a method breakpoint 8-46
Setting a field breakpoint 8-47
Setting a cross-process breakpoint 8-47

Setting breakpoint properties 8-50
Setting breakpoint actions 8-51

Stopping program execution 8-51
Logging a message. 8-51

Creating conditional breakpoints 8-52
Setting the breakpoint condition 8-53
Using pass count breakpoints 8-53

Disabling and enabling breakpoints. 8-54
Deleting breakpoints 8-54
Locating line breakpoints. 8-55

Examining program data values 8-55
How variables are displayed in the

debugger 8-56
Changing data values 8-57
Watching expressions 8-59

Variable watches 8-59
Object watches 8-61
Editing a watch. 8-61
Deleting a watch 8-62

Evaluating and modifying expressions . . . 8-62
Evaluating expressions 8-62
Evaluating method calls. 8-62
Modifying the values of variables 8-63

Modifying code while debugging. 8-64
Updating all class files 8-64
Updating individual class files. 8-65

iv

Resetting the execution point 8-65
Options for modifying code. 8-65

Customizing the debugger 8-67
Customizing the debugger display. 8-67
Setting debug configuration options 8-68
Setting update intervals 8-69

Chapter 9
Remote debugging 9-1
Launching and debugging a program

on a remote computer 9-2
Debugging a program already running

on the remote computer 9-6
Debugging local code running in a

separate process 9-9
Debugging with cross-process breakpoints . . . 9-10

Chapter 10
Creating JavaBeans with
BeansExpress 10-1

What is a JavaBean? 10-1
Why build JavaBeans?. 10-1
Generating a bean class 10-2
Designing the user interface of your bean . . .10-4
Adding properties to your bean 10-4

Modifying a property 10-6
Removing a property 10-7
Adding bound and constrained

properties 10-7
Creating a BeanInfo class 10-8

Specifying BeanInfo data for a property . . . 10-9
Working with the BeanInfo designer 10-9
Modifying a BeanInfo class 10-10

Adding events to your bean 10-11
Firing events 10-11
Listening for events 10-14
Creating a custom event set 10-15

Creating a property editor 10-17
Creating a String List editor 10-17
Creating a String Tag List editor 10-18
Creating an Integer Tag List editor 10-19
Creating a custom component

property editor 10-20
Adding support for serialization 10-21
Checking the validity of a JavaBean 10-21
Installing a bean on the component

palette . 10-22

Chapter 11
Visualizing code with UML 11-1
Java and UML 11-2

Java and UML terms 11-2
JBuilder and UML 11-3

Limited package dependency diagram . . . 11-4
Combined class diagram 11-4
JBuilder UML diagrams defined. 11-7

Visibility icons 11-9
Viewing UML diagrams 11-10

JBuilder’s UML browser 11-11
Viewing package diagrams. 11-12
Viewing class diagrams. 11-12
Viewing inner classes11-12
Viewing source code 11-13
Viewing Javadoc. 11-13
Using the context menu. 11-14
Scrolling the view11-14

Full view 11-15
Partial view. 11-15

Refreshing the view11-15
Navigating diagrams11-15

UML and the structure pane11-16
Package diagrams 11-16
Class diagrams11-17

Customizing UML diagrams 11-17
Setting project properties11-17

Filtering packages and classes 11-18
Including references from project

libraries 11-18
Including references from

generated source11-19
Setting IDE Options11-19

Creating images of UML diagrams11-20
Printing UML diagrams 11-20
Refactoring and Find References 11-21

Chapter 12
Refactoring code symbols 12-1
Types of refactorings 12-1

Optimize Imports 12-2
Rename refactoring 12-2
Move refactoring 12-3
Change Parameters 12-4
Extract Method 12-4
Introduce Variable. 12-4
Surround With Try/Catch 12-4

v

JBuilder’s refactoring tools 12-5
Setting up for references discovery

and refactoring 12-6
Learning about a symbol before

refactoring 12-7
Finding a symbol’s definition12-7
Finding references to a symbol 12-8

Viewing changes before a refactoring . . . 12-10
Executing a refactoring 12-13

Optimizing imports 12-14
Using Optimize Imports 12-16

Rename refactoring a package 12-17
Rename refactoring a class 12-17
Move refactoring a class 12-18
Rename refactoring a method. 12-19
Rename refactoring a local variable 12-20
Rename refactoring a field 12-21
Rename refactoring a property 12-22
Changing method parameters 12-22
Extracting a method 12-24
Introducing a variable 12-25
Surrounding a block with try/catch 12-26
Undoing a refactoring 12-26
Saving refactorings 12-26

Chapter 13
Unit testing 13-1
JUnit . 13-1
Cactus . 13-2
Unit testing features in JBuilder 13-2
Discovering tests 13-3

JUnit Test Collector. 13-3
Creating JUnit test cases and test suites 13-4

The Test Case wizard. 13-5
Adding test code to your test cases. 13-6
The Test Suite wizard 13-7
The EJB Test Client wizard 13-7

Using predefined test fixtures 13-8
JDBC fixture. 13-8
JNDI fixture 13-9
Comparison fixture. 13-10

Creating a custom test fixture 13-11
Working with Cactus 13-11

Cactus Setup wizard 13-11
Creating a Cactus test case for your

Enterprise JavaBean 13-12
Running Cactus tests. 13-13

Running tests 13-13
JBTestRunner 13-14

Test Hierarchy 13-15
Test Failures 13-15
Test Output 13-15

JUnit TextUI 13-16
JUnit SwingUI 13-16
Runtime configurations. 13-16
Defining a test stack trace filter 13-16

Debugging tests 13-17

Chapter 14
Creating Javadoc from API
source files 14-1

Adding Javadoc comments to your API
source files . 14-2

Where to place Javadoc comments 14-3
Javadoc tags 14-5
Automatically generating Javadoc tags . . . 14-6

Javadoc @todo tags 14-7
Conflicts in Javadoc comments 14-8

Generating the documentation node 14-8
Choosing the format of the

documentation 14-9
Choosing documentation build

options 14-10
Choosing the packages to document . . . 14-12
Specifying doclet command-line

options 14-13
Generating the output files 14-16

Generating additional files 14-18
Package-level files 14-18
Overview comment files 14-20

Viewing Javadoc 14-20
How JBuilder displays Javadoc 14-22

Maintaining Javadoc 14-22
Changing properties for the

documentation node 14-23
Changing node properties 14-23
Changing Javadoc properties 14-24
Changing doclet properties 14-24

Creating a documentation archive file 14-25
Creating a custom doclet 14-27

Chapter 15
Deploying Java programs 15-1
Deploying to Java archive files (JAR) 15-2

Understanding the manifest file 15-3
Deployment strategies 15-4

Using the JDK Java Archive Tool 15-5
Running a program from a JAR file 15-5

vi

Viewing archive file contents 15-6
Updating the contents of a JAR file. 15-7

Deployment issues. 15-7
Is everything you need on the class

path? . 15-8
Does your program rely on JDK 1.1.x or

Java 2 (JDK 1.2 and above) features? 15-8
Does the user already have Java

libraries installed locally? 15-9
Is this an applet or an application?15-9
Download time 15-10

Deployment quicksteps 15-10
Applications 15-11
Applets . 15-11
JavaBeans 15-13

Deployment tips 15-14
Setting up your working environment. . . 15-14
Internet deployment 15-14
Deploying distributed applications 15-15

Redistribution of classes supplied with
JBuilder . 15-15

Additional deployment information. 15-16
Deploying with the Archive Builder. 15-17

The Archive Builder and resources. 15-17
Selecting an archive type 15-17
Specifying the file to be created. 15-18
Choosing deployment descriptor files . . . 15-20
Specifying the parts of the project to

archive . 15-21
Specifying archive content for a

Resource Adapter archive 15-22
Determining library dependencies 15-23
Setting archive manifest options 15-24
Selecting a method for determining the

application’s main class 15-25
Determining which executable files

to build. 15-26
Running executables 15-27

Setting runtime configuration options . . . 15-28
Creating executables with the Native

Executable Builder 15-29
Generating archive files 15-31
Understanding archive nodes 15-31

Viewing the archive and manifest 15-31
Modifying archive node properties 15-32
Removing, deleting, and renaming

archives 15-33

Chapter 16
Internationalizing programs
with JBuilder 16-1

Internationalization terms and definitions . . . 16-1
Internationalization features in JBuilder 16-2
A multilingual sample application 16-3
Eliminating hard-coded strings 16-5

Using the Resource Strings wizard 16-5
Using the Localizable Property Setting

dialog box 16-8
dbSwing internationalization features 16-8
Using JBuilder’s locale-sensitive

components 16-9
JBuilder components display any Unicode

character . 16-10
Internationalization features in the UI

designer . 16-10
Unicode in the IDE debugger 16-12
Specifying a native encoding for the

compiler . 16-12
Setting the encoding option 16-12
Native encodings supported 16-13
Adding and overriding encodings 16-13
More about native encodings 16-14

The 16-bit Unicode format 16-14
Unicode support using ASCII and ‘\u’ . . 16-15

JBuilder around the world 16-15
Online internationalization support 16-16

Chapter 17
Tutorial: Compiling, running,
and debugging 17-1

Step 1: Opening the sample project 17-2
Step 2: Fixing syntax errors 17-3
Step 3: Fixing compiler errors 17-4
Step 4: Running the program 17-7

Saving files and running the program . . . 17-9
Step 5: Fixing the subtractValues()

method . 17-10
Saving files and running the program . . 17-15

Step 6: Fixing the divideValues() method . . 17-16
Saving files and running the program . . 17-19

Step 7: Fixing the oddEven() method 17-19
Step 8: Finding runtime exceptions 17-23

vii

Chapter 18
Tutorial: Building with Ant files 18-1
Step 1: Creating a project and application. . . . 18-2
Step 2: Creating the Ant build file 18-2
Step 3: Executing individual targets18-3
Step 4: Executing the default target 18-4
Step 5: Handling errors with Ant 18-5
Step 6: Adding a target to the Project menu. . . 18-6
Step 7: Setting Ant properties. 18-7
Step 8: Adding custom Ant tasks to your

project . 18-9

Chapter 19
Tutorial: Remote debugging 19-1
Step 1: Opening the sample project 19-2
Step 2: Setting runtime and debugging

configurations 19-3
Step 3: Setting breakpoints 19-7
Step 4: Compiling the server and copying

server class files to the remote computer . . .19-9
Step 5: Starting the RMI Registry and server

on the remote computer 19-10
Step 6: Starting the server process and the

client in debug mode and stepping into
the cross-process breakpoint 19-11

Chapter 20
Tutorial: Visualizing code with
the UML browser 20-1

Step 1: Compiling the sample 20-2
Step 2: Viewing a UML package diagram 20-3
Step 3: Viewing a UML class diagram20-5
Step 4: Adding references from libraries 20-9
Step 5: Filtering UML diagrams 20-12

Chapter 21
Tutorial: Creating and running
test cases and test suites 21-1

Step 1: Opening an existing project 21-2
Step 2: Creating skeleton test cases 21-2
Step 3: Implementing a test method that

throws an expected exception 21-3
Viewing the test failure output 21-4
Fixing the test so it passes21-4

Step 4: Writing a second test method 21-5
Step 5: Creating a test suite 21-5
Step 6: Running tests 21-7

Chapter 22
Tutorial: Working with test
fixtures 22-1

Step 1: Creating a new project 22-2
Step 2: Creating a Data Module 22-2
Step 3: Creating a comparison fixture 22-3
Step 4: Creating a JDBC fixture 22-4
Step 5: Modifying the JDBC Fixture to

run SQL scripts 22-5
Step 6: Creating a test case using test

fixtures . 22-6
Step 7: Implementing the test case 22-7
Step 8: Adding a required library 22-8
Step 9: Running the test case. 22-8

Appendix A
Creating configuration files for
native executables A-1

Starting the VM A-3
Configuration file requirements A-3

File type and location A-3
Blank lines and comments A-3
Path conventions A-3

Directives . A-4
javapath . A-4
mainclass . A-4
addpath. A-4
addjars . A-5
addbootpath A-5
addbootjars. A-5
addskippath A-6
vmparam . A-6
include . A-6
includedir A-6
copyenv. A-7
exportenv. A-7
addparam A-7
clearparams A-7
restartcode A-7

Optional all-in-one launcher support. A-8

Appendix B
Using the command-line tools B-1
Setting the class path for command-line

tools. .B-2
Using the -classpath option B-2

viii

Setting the CLASSPATH environment
variable for command-line tools B-2

UNIX: CLASSPATH environment
variable. B-3

Windows: CLASSPATH environment
variable. B-3

JBuilder command-line interface B-4
Accessing a list of options B-4
Syntax . B-5
Options . B-5

Borland Compiler for Java (bcj) B-7
Syntax . B-7
Description B-7

Options . .B-8
Cross-compilation options B-11
VM options. B-11

Borland Make for Java (bmj). B-12
Syntax. . B-12
Description B-12
Options . B-13
Cross-compilation options B-16
Specifiers for root classes B-17
VM options. B-18

Index I-1

ix

1.1 Typeface and symbol conventions 1-4
1.2 Platform conventions 1-5
4.1 Colors in library lists 4-6
6.1 Build system terms 6-2
6.2 Build system phases 6-3
6.3 Package filtering icons 6-25
8.1 Menu commands to start debugger 8-6
8.2 Debugger views 8-10
8.3 Icons in Console view 8-11
8.4 Context menu in Console view. 8-12
8.5 Icons in the Classes with tracing

disabled view 8-12
8.6 Context menu with class/package

selected in Classes with tracing
disabled view 8-12

8.8 Icons in Data and code breakpoints
view . 8-13

8.9 Context menu with breakpoint
selected in Data and code
breakpoints view. 8-13

8.7 Context menu with no selection in
Classes with tracing disabled view 8-13

8.10 Context menu with no selection in
Data and code breakpoints view8-14

8.11 Icons in Threads, call stacks, and
data view8-15

8.12 Context menu with selection in
Threads, call stacks, and data view 8-16

8.14 Icons in Data watches view. 8-18
8.15 Context menu with watch selected

in Data watches view 8-18
8.13 Context menu with no selection in

Threads, call stacks, and data view 8-18

8.16 Context menu with no selection in
Data watches view 8-20

8.17 Icons in Loaded classes and static
data view 8-21

8.18 Context menu with selection in
Loaded classes and static data view . . . 8-21

8.19 Context menu with no selection in
Loaded classes and static data view . . . 8-22

8.20 Icons in Synchronization monitors
view . 8-23

8.21 Context menu in Synchronization
monitors view. 8-23

8.22 Toolbar buttons 8-24
8.23 Debugger shortcut keys 8-25
8.24 Debugger features 8-55
8.25 Types of scoped variable watches. 8-61
11.1 Java and UML terms 11-2
11.2 UML diagram definitions 11-7
11.3 UML visibility icons 11-9
12.1 Refactoring and code symbols 12-3
12.2 Find References details. 12-9
12.3 Refactoring details 12-11
14.1 Javadoc tags 14-5
14.2 Options not set in the wizard 14-15
19.1 Dialog box pages for setting client

and server runtime and debugging
configurations 19-3

19.2 Command line RMI and debugger
arguments19-11

19.1 RMI client/server error messages . . . 19-13

Tables

x

6.1 Properties Resource page 6-26
7.1 Error messages in the AppBrowser 7-4
8.1 The debugger user interface 8-9
8.2 Debugger toolbar 8-23
8.3 ExpressionInsight window 8-26
8.4 Tool tip window. 8-26
8.5 The execution point. 8-29
8.6 Threads, call stacks, and data view

split pane 8-31
8.7 Synchronization monitors view8-32
8.8 Stub source file 8-39
8.9 Stopped In Class With Tracing

Disabled dialog box 8-40
8.10 Data and code breakpoints view 8-41
8.11 Breakpoint actions 8-51
8.12 Breakpoint status bar message 8-51
8.13 Conditional breakpoints 8-53
8.14 Loaded classes and static data view . . .8-56
8.15 Threads, call stacks, and data view 8-57
8.16 Data watches view 8-59
8.17 Expression evaluation in the

Evaluate/Modify dialog box 8-62
8.18 Method evaluation in the

Evaluate/Modify dialog box 8-63
8.19 Debug page of Runtime

Configuration Properties dialog box . . . 8-66
11.1 Package diagram 11-4
11.2 Class diagram 11-5
11.3 Class diagram with properties

displayed separately 11-6
11.4 Class diagram without properties

displayed separately 11-6

11.5 JBuilder’s visibility icons 11-9
11.6 UML browser. 11-11
11.7 Viewing inner classes 11-13
11.8 Structure pane for UML diagrams11-16
12.1 Class references in the Search

Results tab 12-9
12.2 Method references in the Search

Results tab 12-10
12.3 Field and local variable references

in the Search Results tab 12-10
12.4 Rename Class dialog box 12-10
12.5 Refactoring tab before refactoring12-11
12.6 Refactoring tab after refactoring 12-12
12.7 Source file and Refactoring tab

after refactoring 12-13
14.1 ToDo folder in structure pane 14-7
14.2 Javadoc conflicts in structure pane. . . . 14-8
14.3 Choose a doclet page 14-9
14.4 Specify project and build options

page . 14-10
14.5 Select packages and visibility level

page . 14-12
14.6 Specify doclet command-line

options page 14-13
14.7 Documentation node in project

pane . 14-16
14.8 Expanded documentation nodes. . . . 14-20
14.9 Index file output from Standard

Doclet 14-21
14.10 Index file output from JDK 1.1

Doclet 14-21
14.11 On-the-fly Javadoc output 14-22

Figures

xi

Compiling, running, and debugging 17-1
Building with Ant files 18-1
Remote debugging. 19-1
Visualizing code with the UML browser 20-1
Creating and running test cases and

test suites . 21-1
Working with test fixtures 22-1

Tutorials

xii

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

Building Applications with JBuilder explains how to use JBuilder’s IDE to
manage your projects and to compile, run, and debug your Java
programs. It explains how to use BeansExpress to create JavaBeans. It also
describes advanced techniques, such as deploying and internationalizing
applications for different locales, visualizing code, refactoring and unit
testing.

Building Applications with JBuilder contains the following chapters:

• Chapter 2, “Creating and managing projects”

Explains how to work with JBuilder projects and set project properties.

• Chapter 3, “Working with project groups”

Describes how to place related projects in project groups and how to
use them.

• Chapter 4, “Managing paths”

A companion chapter to Chapter 2, “Creating and managing projects,”
this chapter describes how paths are used in JBuilder. Describes how to
work with libraries and packages.

• Chapter 5, “Compiling Java programs”

Explains how to compile your project and set compiler options. Also
explains how to compile from the command line.

• Chapter 6, “Building Java programs”

Explains the JBuilder build process. Discusses the difference between
Make and Rebuild. Describes how to build external Ant files, how to
build project groups, and how to use additional JBuilder features, such
as automatic source packages, package filtering, and resource copying.

1-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

I n t r o d u c t i o n

• Chapter 7, “Running Java programs”

Explains how to use JBuilder’s IDE to run your applications and
applets. Also explains how to manage runtime configurations.

• Chapter 8, “Debugging Java programs”

Explains how to use JBuilder’s integrated debugger to find and fix
errors in your program. Describes the entire debugging process,
discusses the types of bugs you may encounter, and explains how to
examine the values of program variables to uncover bugs.

• Chapter 9, “Remote debugging”

Describes how to debug a program running on a remote computer.

• Chapter 10, “Creating JavaBeans with BeansExpress”

Describes how to create a JavaBean and how to convert an existing class
to a JavaBean.

• Chapter 11, “Visualizing code with UML”

Describes how to use JBuilder’s code visualization features to examine,
navigate, and understand your code.

• Chapter 12, “Refactoring code symbols”

Describes how to use JBuilder’s refactoring features.

• Chapter 13, “Unit testing”

Describes the unit testing features available in JBuilder.

• Chapter 14, “Creating Javadoc from API source files”

Describes how to use JBuilder’s Javadoc-related features to generate
HTML formatted output files from comments in API source code.

• Chapter 15, “Deploying Java programs”

Provides an overview of general deployment issues and explains how
to create Java archive files with the jar tool.

• “Deploying with the Archive Builder” on page 15-17

Explains how to use the Archive Builder to deploy your Java
programs.

• “Creating executables with the Native Executable Builder” on
page 15-29

Explains how to use the Native Executable Builder to create native
executables for your deployed Java programs.

I n t r o d u c t i o n 1-3

I n t r o d u c t i o n

• Chapter 16, “Internationalizing programs with JBuilder”

Explains how to internationalize your Java application or applet with
JBuilder.

• Tutorials:

• Chapter 17, “Tutorial: Compiling, running, and debugging”

Find and fix syntax errors, compiler errors, and logic errors.

• Chapter 18, “Tutorial: Building with Ant files”

Use an Ant build file to build a project.

• Chapter 19, “Tutorial: Remote debugging”

Use remote debugging features to attach to a program already
running on a remote computer and debug using cross-process
stepping.

• Chapter 20, “Tutorial: Visualizing code with the UML browser”

Use JBuilder’s UML features to visualize, analyze, and troubleshoot
your code.

• Chapter 21, “Tutorial: Creating and running test cases and test
suites”

Use JBuilder’s unit testing features to create and run unit tests with
JUnit.

• Chapter 22, “Tutorial: Working with test fixtures”

Create a JDBC Fixture and a Comparison Fixture and use them in a
test case.

The following are appendixes to Building Applications with JBuilder:

• Appendix A, “Creating configuration files for native executables”

Learn how to write custom configuration files to launch the native
executables you create with the Native Executable Builder or the
Archive Builder.

• Appendix B, “Using the command-line tools”

Explains how to use JBuilder’s command-line compilers, JBuilder’s
command-line arguments, and the JDK tools. Also discusses setting the
class path.

1-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D o c u m e n t a t i o n c o n v e n t i o n s

You can also find the following topics in online help:

• “Error and warning messages”

Describes the kinds of errors and warnings that can occur when
compiling, debugging, or running JBuilder applications. Also includes
a list of errors by number.

• “Compiler error messages”

Lists the error messages by number and includes a description of each
message.

For definitions of any unfamiliar Java terms, see “Online glossaries” in
Getting Started with Java.

Documentation conventions
The Borland documentation for JBuilder uses the typefaces and symbols
described in the following table to indicate special text.

Table 1.1 Typeface and symbol conventions

Typeface Meaning

Monospaced type Monospaced type represents the following:
• text as it appears onscreen
• anything you must type, such as “Type Hello World in the

Title field of the Application wizard.”
• file names
• path names
• directory and folder names
• commands, such as SET PATH
• Java code
• Java data types, such as boolean, int, and long.
• Java identifiers, such as names of variables, classes, package

names, interfaces, components, properties, methods, and
events

• argument names
• field names
• Java keywords, such as void and static

Bold Bold is used for java tools, bmj (Borland Make for Java), bcj
(Borland Compiler for Java), and compiler options. For example:
javac, bmj, -classpath.

Italics Italicized words are used for new terms being defined, for book
titles, and occasionally for emphasis.

Keycaps This typeface indicates a key on your keyboard, such as “Press
Esc to exit a menu.”

[] Square brackets in text or syntax listings enclose optional items.
Do not type the brackets.

I n t r o d u c t i o n 1-5

D o c u m e n t a t i o n c o n v e n t i o n s

JBuilder is available on multiple platforms. See the following table for a
description of platform conventions used in the documentation.

< > Angle brackets are used to indicate variables in directory paths,
command options, and code samples.
For example, <filename> may be used to indicate where you need
to supply a file name (including file extension), and <username>
typically indicates that you must provide your user name.
When replacing variables in directory paths, command options,
and code samples, replace the entire variable, including the
angle brackets (< >). For example, you would replace <filename>
with the name of a file, such as employee.jds, and omit the angle
brackets.
Note: Angle brackets are used in HTML, XML, JSP, and other
tag-based files to demarcate document elements, such as <font
color=red> and <ejb-jar>. The following convention describes
how variable strings are specified within code samples that are
already using angle brackets for delimiters.

Italics, serif This formatting is used to indicate variable strings within code
samples that are already using angle brackets as delimiters. For
example, <url="jdbc:borland:jbuilder\\samples\\guestbook.jds">

... In code examples, an ellipsis (...) indicates code that has been
omitted from the example to save space and improve clarity. On
a button, an ellipsis indicates that the button links to a selection
dialog box.

Table 1.2 Platform conventions

Item Meaning

Paths Directory paths in the documentation are indicated with a
forward slash (/).
For Windows platforms, use a backslash (\).

Home directory The location of the standard home directory varies by platform
and is indicated with a variable, <home>.
• For UNIX and Linux, the home directory can vary. For

example, it could be /user/<username> or /home/<username>
• For Windows NT, the home directory is C:\Winnt\Profiles\

<username>

• For Windows 2000 and XP, the home directory is
C:\Documents and Settings\<username>

Screen shots Screen shots reflect the Metal Look & Feel on various
platforms.

Table 1.1 Typeface and symbol conventions (continued)

Typeface Meaning

1-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e v e l o p e r s u p p o r t a n d r e s o u r c e s

Developer support and resources
Borland provides a variety of support options and information resources
to help developers get the most out of their Borland products. These
options include a range of Borland Technical Support programs, as well as
free services on the Internet, where you can search our extensive
information base and connect with other users of Borland products.

Contacting Borland Technical Support

Borland offers several support programs for customers and prospective
customers. You can choose from several categories of support, ranging
from free support on installation of the Borland product to fee-based
consultant-level support and extensive assistance.

For more information about Borland’s developer support services, see our
web site at http://www.borland.com/devsupport/, call Borland Assist at (800)
523-7070, or contact our Sales Department at (831) 431-1064.

When contacting support, be prepared to provide complete information
about your environment, the version of the product you are using, and a
detailed description of the problem.

For support on third-party tools or documentation, contact the vendor of
the tool.

Online resources

You can get information from any of these online sources:

World Wide Web

Check www.borland.com/jbuilder regularly. This is where the Java Products
Development Team posts white papers, competitive analyses, answers to
frequently asked questions, sample applications, updated software,
updated documentation, and information about new and existing
products.

World Wide Web http://www.borland.com/

FTP ftp://ftp.borland.com/

Technical documents available by anonymous ftp.

Listserv To subscribe to electronic newsletters, use the online
form at:
http://info.borland.com/contact/listserv.html

or, for Borland’s international listserver,
http://info.borland.com/contact/intlist.html

I n t r o d u c t i o n 1-7

D e v e l o p e r s u p p o r t a n d r e s o u r c e s

You may want to check these URLs in particular:

• http://www.borland.com/jbuilder/ (updated software and other files)

• http://www.borland.com/techpubs/jbuilder/ (updated documentation and
other files)

• http://community.borland.com/ (contains our web-based news magazine
for developers)

Borland newsgroups

You can register JBuilder and participate in many threaded discussion
groups devoted to JBuilder. The Borland newsgroups provide a means for
the global community of Borland customers to exchange tips and
techniques about Borland products and related tools and technologies.

You can find user-supported newsgroups for JBuilder and other Borland
products at http://www.borland.com/newsgroups/.

Usenet newsgroups

The following Usenet groups are devoted to Java and related
programming issues:

• news:comp.lang.java.advocacy
• news:comp.lang.java.announce
• news:comp.lang.java.beans
• news:comp.lang.java.databases
• news:comp.lang.java.gui
• news:comp.lang.java.help
• news:comp.lang.java.machine
• news:comp.lang.java.programmer
• news:comp.lang.java.security
• news:comp.lang.java.softwaretools

Note These newsgroups are maintained by users and are not official Borland
sites.

Reporting bugs

If you find what you think may be a bug in the software, please report it in
the Support Programs page at http://www.borland.com/devsupport/namerica/.
Click the “Reporting Defects” link to bring up the Entry Form.

When you report a bug, please include all the steps needed to reproduce
the bug, including any special environmental settings you used and other
programs you were using with JBuilder. Please be specific about the
expected behavior versus what actually happened.

1-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e v e l o p e r s u p p o r t a n d r e s o u r c e s

If you have comments (compliments, suggestions, or issues) for the
JBuilder documentation team, you may e-mail jpgpubs@borland.com. This is
for documentation issues only. Please note that you must address support
issues to developer support.

JBuilder is made by developers for developers. We really value your
input.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-1

C h a p t e r

2
Chapter2Creating and managing projects

JBuilder does everything within the context of a project. As used in this
documentation, the term “project” includes all the files within a
user-defined body of work, the directory structure those files reside in,
and the paths, settings, and resources required.

The project is an organizational tool, not a repository. This means that files
in a project can be in any folder. Restructuring a project tree has no effect
on your directory tree. This gives you independent control of projects and
directory structure.

Each project is administered by a project file. The project file’s name is the
name of the project with a jpx extension. The project file contains a list of
files in the project and maintains the project properties, which include a
project template, default paths, class libraries, and connection
configurations. JBuilder uses this information when you load, save, build,
or run a project. Project files are modified whenever you use the JBuilder
development environment to add or remove files or set or change project
properties. You can see the project file as a node in the project pane. Listed
below it are all the packages and files in the project.

Note If automatic source packaging is enabled, source package nodes also
appear in the project pane. These display files and packages that are on
the project’s source path. See “Automatic source packages” on page 6-21.

While you can include any type of file in a JBuilder project, there are
certain types of files that JBuilder automatically recognizes and for which
it has appropriate views. You can add binary file types, customize file
type handling, and see the icons associated with file types by selecting
Tools|IDE Options and choosing the File Types tab.

You’re asked to configure file associations when starting JBuilder for the
first time. JBuilder prompts you to associate .class, .java, and project and
project group file types of files with JBuilder. Doing so makes JBuilder the

This is a feature of
JBuilder SE and

Enterprise

2-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a n e w p r o j e c t

default program for opening and viewing these files. You can change
these configurations by selecting Tools|Configure File Associations to
invoke the Configure File Associations dialog box.

Creating a new project
To start a new project, use JBuilder’s Project wizard to generate the basic
framework of files, directories, paths, and preferences automatically. The
Project wizard can automatically create a project notes file for your notes
and comments. The class Javadoc fields that are filled out in the Project
wizard are used in the project notes file, as Javadoc header comments
when using JBuilder’s wizards to create Java files, and consequently
included in Javadoc-generated documentation. These comments can be
modified on the General page of the Project Properties.

When using many of JBuilder’s wizards, if a project is not open, the
Project wizard is launched first so that you can create a new project.

Creating a new project with the Project wizard

To create a new project with the Project wizard, select File|New Project.
You may also choose File|New, select the Project tab, and double-click the
Project icon. The Project wizard appears.

Selecting project name and template
Use Step 1 to set your project name, type, root directory, and project
template.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-3

C r e a t i n g a n e w p r o j e c t

1 Enter a name for the new project.

JBuilder uses the project name as the package name by default.

Any file name legal to the file system is allowed for the project name.
However, there are other names which are derived from this file name
and these derived names have restrictions which must be met:

a The project directory name can appear on a Java classpath. Since
embedded spaces can cause problems, if there are spaces, they are
replaced with underbars.

b The wizard uses the project name as the default package name.
Therefore, it must be a legal Java package name. This means that
leading numbers are removed from the file name, spaces are
replaced with underbars, the case is forced to lowercase, and the
name may be truncated if it’s too long.

2 Select the project directory. The project directory is the one that
contains the project file. Many other project paths, such as the source
and backup paths, descend from this by default.

• Click the down arrow to select a directory you’ve used previously as
the parent or to choose one in the same tree that you can edit.

• You can edit the field directly or click the ... button to browse to an
existing directory.

Note If you enter a path that’s syntactically flawed, you won’t be able
proceed.

3 Accept (Default project) as the value of the Template field. (You can
click the Help button to read about project templates if you like.)

4 To add the project you are creating to an existing project group (the
project group must be active), check the Add Project To Active Project
Group check box. This check box is enabled only if you currently have
an open and active project group. Project groups are available in
JBuilder Enterprise only. For more information about project groups,
see Chapter 3, “Working with project groups.”

5 To generate an HTML project notes file, check the Generate Project
Notes File check box. This file is optional.

6 Click Next to go to Step 2.

If the Finish button is enabled, you can click it, accepting JBuilder’s
defaults for the rest of the wizard, and create the project immediately.

2-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a n e w p r o j e c t

Setting project paths
Step 2 sets all paths for the project, including the JDK version to compile
against. You can change these settings later using the Paths page of the
Project Properties dialog box (Project|Project Properties) if you need to.

JBuilder suggests the project directory set in Step 1 as the working
directory. The working directory is the starting directory that JBuilder
gives a program when it is launched. Any directory may be configured as
the working directory.

To change any of paths on this page, either type in the new path or
navigate to it by clicking the ... button next to the appropriate field.

Note If you’re just beginning with JBuilder, simply accept the default values on
this page. If you enter a path that’s syntactically flawed, you can’t
proceed. More advanced users might want to change these directories to
those of their choosing. For more information about using this page and
complete information about the various directories, click the Help button
in the Project wizard.

Click Next to go to Step 3 or click Finish to create your project. More
advanced users might want to continue to Step 3.

Setting general project settings
Step 3 of the Project wizard includes general project settings, such as
encoding, default runtime configuration, automatic source packages, class
Javadoc fields, and references from project libraries.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-5

C r e a t i n g a n e w p r o j e c t

This information can later be changed on the General page and Run page
of the Project Properties dialog box (Project|Project Properties).

1 Choose an encoding or accept the default encoding. Encoding
determines how JBuilder should handle characters beyond the ASCII
character set. The default is your platform’s default encoder.

See also

• “Specifying a native encoding for the compiler” on page 16-12

• “Internationalization Tools: native2ascii” at http://java.sun.com/
products/jdk/1.4/docs/tooldocs/tools.html#intl

2 Choose the Enable Assert Keyword option if you want assert
recognized as a keyword.

JBuilder supports JDK 1.4 assertions. Before JDK 1.4, assert was a
keyword reserved for future use. With JDK 1.4, the assert keyword has
been added to the language and is used in the assertion facility. assert
takes a boolean value which checks a condition before the associated
expression is executed. Assertions are enabled or disabled at runtime.

See also

• http://java.sun.com/j2se/1.4/docs/guide/lang/assert.html

2-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a n e w p r o j e c t

This is a feature of
JBuilder SE and

Enterprise

3 Select Automatic Source Packages options.

a The Enable Source Package Discovery And Compilation option is
enabled by default. When it’s enabled, several things happen:

• All packages in the project’s source path appear in the project
pane (upper left pane) of the IDE.

• Packages that contain Java files are compiled automatically.

• Files generated by this compilation are copied to the project’s out
path.

Not all packages are displayed, only a logical subset determined by
how deeply you tell JBuilder to expose packages.

b Select how deeply you want packages exposed.

JBuilder exposes packages to the level you set, unless adding more
levels to a package will not change the length of the package list. For
instance, if you have these three packages,

one.two.three.four
one.two.three.five
one.two.four.six

and set the package level to three, this is what shows in the project
pane:

one.two.three
one.two.four.six

The two packages one.two.three.four and one.two.three.five are both
contained in one.two.three, so JBuilder represents only the parent
package and allows you to expand the package node to access the
packages and files inside.

The package one.two.four.six is exposed to the fourth level because
shortening the representation won’t shorten the package list, so you
might as well see what you’ve got.

See also

• “Packages” on page 4-6

4 Specify the class Javadoc fields. These can be used in the project notes
file, your application’s Help|About dialog box, and can also be
inserted as Javadoc header comments in wizard-generated files created
for your project.

Select a field to edit and enter the appropriate text in the Text column.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-7

C r e a t i n g a p r o j e c t f r o m e x i s t i n g f i l e s

Find References is a
feature of JBuilder SE

and Enterprise

UML is a feature of
JBuilder Enterprise

5 Check Include References From Project Library Class Files if you want
to be able to find references to any of the project libraries. The Find
References command on the editor’s context menu allows you to
discover all source files that use a given symbol. Also check this if you
want your project’s UML diagrams to show references from project
libraries.

See also

• “Finding references to a symbol” on page 12-8

• Chapter 11, “Visualizing code with UML”

6 If you have JBuilder Enterprise and you want to include references
such as IIOP files or EJB stubs in the UML diagrams of your project,
check the Diagram References From Generated Source option.

See also

• Chapter 11, “Visualizing code with UML”

7 Click Finish when done.

JBuilder creates a new project that appears in the project pane.

If you later want to change the settings you specified for your project
using the Project wizard, you can change them using the Paths page and
the General page of the Project Properties dialog box (Project|Project
Properties).

Creating a project from existing files
This is a feature of

JBuilder SE and
Enterprise

The Project For Existing Code wizard allows you to create a new JBuilder
project using an existing body of work. When you use this wizard,
JBuilder scans the existing directory and builds paths that are used for
compiling, searching, debugging, and other processes. Any JAR or ZIP
files that aren’t already in libraries are placed in a new library and added
to the project. Project libraries are listed on the Required Libraries tab of
the Paths page of Project Properties (Project|Project Properties).

To access the Project For Existing Code wizard,

1 Select File|New. The object gallery appears.

2 Select the Project tab.

3 Double-click the Project For Existing Code icon.

2-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a p r o j e c t f r o m e x i s t i n g f i l e s

Selecting the source directory and name for your new
JBuilder project

Step 1 sets your project directory, name, type, and project template.

1 Choose the directory where the existing project or source tree is located.
Click the ... button to browse to it. JBuilder scans the selected directory
for such files as class, source, JAR, and ZIP and places them in the
appropriate directories within that directory.

2 Enter a name for the new project. JBuilder uses the project name as the
package name by default, so if you have an existing package name use
that as the project name. JBuilder’s wizards also use the project name as
the package name, which can be edited in the wizards.

3 Select your project template:

• Click the down arrow to choose a project you’ve used previously as
a template.

• Click the ... button to use a different project as the template in the
Open Project dialog box.

The project template provides default values for the settings
described in the Project Properties dialog box (Project|Project
Properties). If you already have a JBuilder project whose project
properties are close to what is required in the new project, select it
here. This minimizes the repetitive work involved in setting up a
new project within an established environment.

4 Choose whether to generate an HTML project notes file. The initial
information in this file, such as title, author, and description, is
generated from the class Javadoc fields set in Step 3 of the Project For
Existing Code wizard. You can also add notes and other information in
this file as needed.

5 Click Next to go to Step 2.

Steps 2 and 3 of the Project For Existing Code wizard are identical to the
Project wizard. These steps are also the same as the Paths page and the
General page of Project Properties. See “Creating a new project with the
Project wizard” on page 2-2.

If your project requires specific libraries, you can add them to the project on
the Paths page of the Project Properties dialog box. To set the main class to
run your project, choose the Run page of the Project Properties dialog box.

See also

• “Setting paths for required libraries” on page 2-22

• “Using the Run command” on page 7-3

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-9

D i s p l a y i n g f i l e s

Displaying files
JBuilder displays each open file of a project in the content pane of the
AppBrowser. Double-click a file in the project pane to open it in the
content pane. A tab with the file name appears at the top of the content
pane.

The following figure shows a project file, Welcome.jpx, in the project pane
with the source files listed below it. This project contains a package and
three source files. Two files are open in the content pane with the selected
file, WelcomeApp.java, showing in the source pane.

Right-click the project file to display a menu with such menu selections as
Open, Add Files/Packages, Remove From Project, Close Project, Make,
Rebuild, and Properties. Many of these menu selections are also available
from the Project menu.

Switching between files

When you have a lot of files open, it’s not always easy to look through all
the open file tabs to find the one you want to use. There are two ways to
switch quickly between open files:

• Choose Window|Switch or press Ctrl+B to display the Switch dialog
box, which lists all the open files in your project. Scroll down to select
the file you want. Or begin typing the name of the file and the first
match in the list is selected; keep typing until the file you want is
selected. Once you’ve selected your file, choose OK.

2-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S a v i n g p r o j e c t s

• Choose Window to display the Window menu and select the file you
want from the list of open files listed on the menu. The currently active
file has a checkmark next to it.

You can also switch between open projects from the Window menu.

Tip If you prefer, you can have the file tabs display vertically on the right side
of the content pane instead of at the top. Choose Tools|IDE Options and
in the Content Pane Tab options, select Vertical from the drop-down
Orientation list. The Content Pane Tab options also offer other tab display
options you might like to explore.

Saving projects
When you are working on a project, you can save it to the suggested
location or to a directory of your choice. By default, JBuilder saves projects
to the jbproject directory of your home directory, although this depends
on how your system is set up. Each project is saved to its own directory
within jbproject. Each project directory includes a project file, an optional
.html file for project notes, a classes subdirectory for generated files (such
as .class files), a src subdirectory for source files, a bak subdirectory for
backup files, and a doc directory for documentation.

Saving and closing projects
To save a project, select File|Save All, File|Save Project, or click the Save
All button on the main toolbar.

To close a project, select File|Close Projects or click the Close Project
button on the project toolbar.

See also

• “How JBuilder constructs paths” on page 4-9

• “Where are my files?” on page 4-12

Opening an existing project
There is one way to open an existing project for the first time: use File|
Open Project. There are two ways to open an existing project you have
opened before: either the File|Open Project command or the File|Reopen
command.

To open a project using the File|Open Project command,

1 Choose File|Open Project. The Open File dialog box appears.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-11

C r e a t i n g a n e w J a v a s o u r c e f i l e

2 Navigate to the directory that contains the project file you want to
open.

3 Select the project file and click OK or press Enter. You can also
double-click the project file to open it.

To open a previously opened project with the File|Reopen command,

1 Choose File|Reopen.

2 Choose the project you want to open from the list of previously opened
projects.

The project file and its source files will appear in the project pane.

To open a file in the content pane, you may do one of three things:

• Double-click the file in the project pane.
• Select the file in the project pane and press Enter.
• Right-click the file in the project pane and select Open.

To view a project in a new AppBrowser,

1 Select Window|New Browser.

2 Select File|Open Project and navigate to the file in the Open Project
dialog box.

If you have more than one AppBrowser open and the same files open in
multiple AppBrowsers, changes you make in one AppBrowser will be
reflected immediately in the same file open in the other AppBrowser. This
keeps all your working versions of a file congruent.

Note All open projects are available in all AppBrowsers from the Project
drop-down list.

Creating a new Java source file
There are several ways to create Java source files within JBuilder. Many of
JBuilder’s wizards create files. Most of these are available from the object
gallery (File|New) or from the Wizards menu. Specifically, the Class
wizard generates the framework of a new Java class.

To create an empty Java source file,

1 Choose File|New File to display the Create New File dialog box.

2 Type the name of the file in the Name field.

3 Select the java file type from the drop-down list or include the
extension when you type the name.

2-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a n e w J a v a s o u r c e f i l e

4 If you want to change the directory where the file is saved, type in the
new directory in the Directory field or choose the ... button to select the
directory you want.

5 Choose OK.

JBuilder creates the new file and opens it in the content pane.

To create a new Java source file using the Class wizard,

1 Create a new project as described in “Creating a new project” on
page 2-2.

2 Choose File|New Class to display the Class wizard.

3 Enter the package, class, and base class names in the Class wizard.

4 Select options for exposure, method handling, and header comments.

5 Click OK.

The .java file is created and added to your project (its node appears in the
project pane). The new file opens in the content pane in editor.

See also

• “Adding to a project” on page 2-13

• “Packages” on page 4-6

• “Setting general project settings” on page 2-4

After you edit a file, save it by choosing File|Save or clicking the Save File
icon. The path and parent directory of the file appears at the top of the
AppBrowser window when the file is selected and open. You can save all
files in your project by choosing File|Save All or clicking the Save All
icon.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-13

M a n a g i n g p r o j e c t s

Managing projects
JBuilder is designed to support the developer in performing as many
development tasks as possible. JBuilder’s project tools, rich IDE, and
extensive editor features automate and simplify the work of development
while allowing you to focus on your code.

Adding to a project

In the AppBrowser, you can add folders, new files, and existing files to
your project. Many of these commands are available from the project
pane’s context-sensitive (right-click) menu as well as the main menu.

For larger projects, you can use project folders to organize your project’s
hierarchy.

Note Project folders are for organizational purposes only and do not
correspond to directories on disk.

Adding folders
Project folders don’t affect the directory tree. They are organizing tools
that allow you to sort elements of a project in a way that’s useful to you
without affecting the directory structure.

To add a project folder to a project,

1 Select the project in the project pane (upper left).

2 Choose File|New Folder from the main menu or right-click in the
project pane.

3 Select New Folder.

Tip To nest the new folder inside an existing one, select the existing folder
before choosing File|New Folder.

4 Type the name of the folder.

5 Click OK or press Enter.

To add a file to a folder,

1 Either right-click the folder and choose Add Files/Packages to open the
Add Files Or Packages To Project dialog box, or select the folder and
click the Add Files/Packages button on the project pane toolbar.

2 Navigate on the Explorer page of the Add Files To Project dialog box to
the directory that contains the file you want to add.

3 Select the file and click Open.

2-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

M a n a g i n g p r o j e c t s

Adding files and packages
Automatic source path discovery, a feature of JBuilder SE and Enterprise,
adds new files and packages to the project on the fly. Set this option on the
General page of the Project Properties dialog. It’s on by default.

If you’re not using this feature, files and packages must be explicitly
added to a project in order for JBuilder to treat them as part of the project.
Add files and packages to the current project using the Add Files Or
Packages To Project dialog box.

There are two ways to access this dialog box. Use the way you prefer:

• Click the Add Files/Packages button that’s on the project pane toolbar.

• Right-click any node in the project pane and choose Add Files/
Packages from the context menu.

When the dialog box is appears, follow these steps:

1 Select the Explorer page to add a file, the Packages page to add a
package, or the Classes page to add a class. All of these pages support
multiple selection.

2 Navigate to the file, class, or package you want to import.

3 Select the file or package you want. Once you’re in a file’s parent
directory, you may type in the filename instead of selecting it.

4 Double-click your selection, click OK, or press Enter.

The new node appears inside the project directory in the project pane.

Removing material from a project

You can remove folders, files, classes, and packages from your project
without deleting them from the drive with the Remove From Project
dialog box.

To remove a node from your project, choose one of these options:

• Right-click the node you want to remove, choose Remove From Project,
and click OK.

• Select the node you want to remove, click the Remove From Project
button on the project pane toolbar, and click OK.

Note If a folder contains files, they are also removed from the project.

You can also select multiple nodes and remove them from the project.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-15

M a n a g i n g p r o j e c t s

Deleting material

You can also delete unwanted files, classes, and packages from the disk by
right-clicking the item in the project pane and choosing Delete.

Caution This permanently deletes the files from the project and the computer’s
hard disk.

Opening a file outside of a project

Use the File|Open file command to open a file in the AppBrowser without
adding the file to the open project. A project must be open in order for this
option to be available.

To open a file without adding it to a project,

1 Choose File|Open File. The Open File dialog box appears.

2 Select the file you want to open.

3 Click OK. The file contents are displayed in the AppBrowser.

This is a feature of
JBuilder SE and

Enterprise.

You can also open a file in the open project in another AppBrowser.

1 Right-click a file in the project pane.

2 Choose Open In New Browser.

Renaming projects and files

To rename a project or file,

1 Select the project or file in the project pane.

2 Select Project|Rename, File|Rename, or right-click in the project pane
and select Rename.

3 Enter the new name in the Rename dialog box and click OK.

You can also rename an open file using the file’s tab at the top of the
content pane:

1 Right-click the file tab at the top of the content pane.

2 Select Rename.

3 Enter the new name in the Rename dialog box and click OK.

Note Renaming a file does not change the file type. To change the file extension,
use File|Save As.

2-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

M a n a g i n g p r o j e c t s

Caution Renaming projects and files does not change the package and file names
referenced inside the code. JBuilder SE and Enterprise provide rename
refactoring. This changes all of the uses of the old name to match the new
name.

See also

• Chapter 12, “Refactoring code symbols”

Adding a new directory view

This is a feature of
JBuilder SE and

Enterprise

You can choose to add a new node to the project pane that can point to
any directory of your choosing. For example, you might have code that is
buried deep in your project structure. You can simply add the directory
that contains that code as a project node in the project pane. When you
open that node, you’ll have immediate access to your code instead of
having to navigate through a complicated directory structure.

A directory view is much like a live view of your directory or directory
tree that displays all file types. Once you’ve created a directory view and
when changes occur to the actual contents of the directory or its
subdirectories, the directory view will be updated in the project pane (you
might need to click the Refresh icon on the project toolbar to refresh the
project).

When you pull a project using CVS, a new directory view node is created
that shows the entire project directory tree with CVS subdirectories
hidden. This provides the ability to locate any file in the project regardless
of type, and select it for doing a CVS operation.

To add a directory view to a project,

1 Choose Project|New Directory View or right-click the project node (the
.jpx file) in the project pane and choose New Directory View.

2 Navigate to the directory you want to expose directly in the project
pane.

3 Click OK and the directory you selected is added as a node in the
project pane.

4 Open the node to see the files contained in the directory.

You can customize which files and subdirectories appear when you open
the directory view project node. For example, you could choose to display
just .java files or .html files. You can even have multiple directory views of
the same project so that one view displays .java files, another .html files,
and another displays all files that begin with the letter ‘a’.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-17

S e t t i n g p r o j e c t p r o p e r t i e s

To customize the directory view,

1 Right-click the directory view project node in the project pane.

2 Choose Properties.

The Properties dialog box appears containing just a Directory View
page:

3 Specify a meaningful name for the directory view project node or keep
the default name, which is the name of the directory.

4 Use the Filtering options to filter the files and directories that appear
when you open the directory view project node. For example, These are
examples of file patterns:

*.java
myfile?.java
file??.*

Note You cannot string multiple file patterns together, such as *.java;*.cpp.

For complete information about using these options, click the Help
button in this dialog box.

5 Click OK.

Setting project properties
Project properties control how the project is compiled. Using the Project
Properties dialog box (Project|Project Properties), you can specify project
path settings, set up a run configuration for your project, specify how a
project is built, customize the display of UML diagrams, specify server
options, and much more.

2-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g p r o j e c t p r o p e r t i e s

To set project properties,

1 Right-click the .jpx file name in the project pane and choose Properties
to display the Project Properties dialog box. Or, select the project and
choose Project|Project Properties. The Project Properties dialog box
appears.

2 Select the appropriate tab for the options you want to set. In this image
the Paths page is selected:

Here are brief descriptions of what you can do on each page of the Project
Properties dialog box:

• Paths page: set project path settings for the JDK version, output path,
backup path, working directory, source paths, test path, documentation
path, and required libraries paths.

• General page: set options for encoding, enabling automatic source
packages, modify class Javadoc fields that wizards can generate, and
set the option to include references from project libraries.

• Run page: select or create a configuration to use for running or
debugging.

• Build page: set compiler options for building a project, including debug
information and selective resource copying.

• Formatting page: set code formatting options. JBuilder can speed your
coding by formatting it automatically to your specifications. This is a
feature of JBuilder Enterprise.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-19

S e t t i n g p r o j e c t p r o p e r t i e s

• Class Filters: set options for class filters.

• Server page: set server options. This is a feature of JBuilder Enterprise.
Note You can also set these options for all future projects in the Default

Project Properties dialog box (Project|Default Project Properties) or
select the default project as your project template in the Project wizard.

Setting the JDK
On the Paths page, you can set the JDK version, various paths for the
project, and the Required Libraries Paths.

JBuilder SE and Enterprise fully support JDK switching, while JBuilder
Personal allows you to edit a single JDK. JBuilder compiles and runs
against all Sun JDKs and many others.

With JBuilder SE and Enterprise, you can set the JDK version for your
project on the Paths page of the Project Properties dialog box as well as
add, edit, and remove JDKs in the Configure JDKs dialog box. See “Setting
the JDK in SE and Enterprise” on page 2-20.

For JBuilder Personal, you can edit the JDK in the Configure JDKs dialog
box (Tools|Configure JDKs). See “Editing the JDK” on page 2-19.

Editing the JDK

You can edit the current JDK version as follows:

1 Select Tools|Configure JDKs to open the Configure JDKs dialog box:

2 Click the Change button to the right of the JDK Home Path field. The
Select Directory dialog box appears.

2-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g p r o j e c t p r o p e r t i e s

3 Browse to the target JDK.

4 Click OK to change the JDK.

Note the revised JDK name and home path in the Configure JDKs
dialog box.

5 Click OK to close the Configure JDKs dialog box.

Debugging with -classic
The Always Debug With -Classic option in the Configure JDKs dialog box
provides improved performance for users with JVM versions below 1.3.1.
JBuilder automatically checks to see if this option will improve your
performance, then checks or unchecks this box according to what will give
you the best results. This feature is available in all editions of JBuilder.

In performing its evaluation, JBuilder performs two checks:

1 Do you have the Classic VM?

2 If present, is the JVM a version earlier than 1.3.1?

This selection is overridden when you define VM parameters such as
native, hotspot, green, or server.

Setting the JDK in SE and Enterprise
JBuilder SE and Enterprise support JDK switching. You can also add, edit,
and delete JDKs. To switch to another JDK, follow these steps:

1 Select Project|Project Properties and select the Paths tab.

2 Click the ... button to the right of the JDK version. The Select A JDK
dialog box appears:

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-21

S e t t i n g p r o j e c t p r o p e r t i e s

3 If the target JDK is listed, select it and press OK.

If it’s not listed, select New to open the New JDK wizard.

a Click the ... button and browse to the home directory of the JDK you
want to add to the list. Click OK. Note that the JDK Name field is
filled in automatically.

b Select the location to store the JDK specifications:

• User Home: saves the JDK specifications in a .library file in the
.jbuilder directory of the user’s home directory. Save to this
location if you want the JDK available to all projects.

• JBuilder: saves the JDK specifications in a .library file in the
jbuilder directory. Multiple users who are using JBuilder on a
network or sharing JBuilder on a single machine have access to
the JDKs in this folder. This is a feature of JBuilder SE and
Enterprise.

• Project: saves the JDK specifications in a .library file in the
current project’s directory. Save to this location if you only want
the JDK available to this project. This is a feature of JBuilder SE
and Enterprise.

• User-defined folder: saves the JDK specifications to an existing
user-defined folder or shared directory. You must add the new
folder (select Tools|Configure JDK and click Add Folder) before
it can appear in the drop-down list. This is a feature of JBuilder
Enterprise.

c Click OK. Note that the JDK specification has been added to the
specified directory in the Select A JDK dialog box.

4 Click OK to close the Select A JDK dialog box. Note that the JDK path is
updated to the new selection.

5 Click OK to close the Project Properties dialog box.

2-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g p r o j e c t p r o p e r t i e s

6 Save the project. The JDK version is updated in the project file.

Tip You can add, edit, and delete JDKs by selecting Tools| Configure JDKs.
You can also modify the Default Project Properties (Project|Default
Project Properties) to change the JDK for all future projects.

Configuring JDKs

Adding and deleting
JDKs are features of

JBuilder SE and
Enterprise

You can add, edit, and delete JDKs in the Configure JDKs dialog box
(Tools|Configure JDKs). JBuilder Personal users can edit JDKs as
explained in “Editing the JDK” on page 2-19.

In this dialog box, you can

• Name the JDK by selecting the Rename button.

• Add, edit, remove, and reorder JDK class, source, and documentation
files.

• Open the New JDK wizard and add JDKs by selecting the New button.

• Add a folder that others can share. This is a feature of JBuilder
Enterprise.

• Delete an existing JDK from the list.

See also

• Configure JDKs dialog box Help button.

• New JDK wizard Help button.

Setting paths for required libraries

On the Paths page of the Project Properties dialog box, you can set the
libraries to use when compiling. JBuilder places any selected libraries on
the classpath. To add, edit, remove, and reorder libraries, select the
Required Libraries tab.

C r e a t i n g a n d m a n a g i n g p r o j e c t s 2-23

W o r k i n g w i t h m u l t i p l e p r o j e c t s

You can select libraries in the Required Libraries list on the Paths page
and edit, delete, or change their order in the library list.

Note Libraries are searched in the order listed. To switch the order of libraries,
select a library, then click Move Up or Move Down.

The Add button displays the Select One Or More Libraries dialog box,
where you choose the libraries to add to your project. Select New in this
dialog box to open the New Library wizard and create a new library.

You can also configure libraries by selecting Tools|Configure Libraries.

See also

• “Working with libraries” on page 4-1

Working with multiple projects
You can work on multiple projects simultaneously in the JBuilder
development environment. You can open them in one AppBrowser or in
different AppBrowsers. All open projects are available from any open
AppBrowser from the Project drop-down list. Any changes made in one
AppBrowser are also made in any other open AppBrowsers displaying
the same project. Open a new JBuilder AppBrowser by selecting
Window|New Browser.

If you have JBuilder Enterprise, you can also group multiple projects in
project groups. Project groups are particularly useful when you are
working with related projects. For information about projects groups, see
Chapter 3, “Working with project groups.”

Switching between projects

If several projects are open in the AppBrowser, only one project is visible
in the project pane. Switch to another open project by selecting the project
from the Project drop-down list on the toolbar above the project pane.

2-24 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

M o r e i n f o r m a t i o n a b o u t p r o j e c t s

Open AppBrowsers, projects, and files are all available from the Window
menu:

Choose New Browser to open another AppBrowser. Control the browser
windows with the next four commands. Select either the open file or the
project file that belongs to an alternate AppBrowser to switch between
browser windows.

Open files in the current browser are also available from this menu. This
provides an alternate way to access open files—especially helpful for
those who prefer not to show file names on file tabs.

Saving multiple projects

To save changes to all open files and projects, choose File|Save All. All
files in all open AppBrowsers are saved.

More information about projects
While you are working with your JBuilder projects, you must have a good
understanding of how JBuilder uses paths so you can make full use of
features such as libraries and CodeInsight. See Chapter 4, “Managing
paths.”

The ability to group
projects is a feature of

JBuilder Enterprise

JBuilder allows you to group projects into a project group. To read about
project groups, see Chapter 3, “Working with project groups.”

W o r k i n g w i t h p r o j e c t g r o u p s 3-1

C h a p t e r

3
Chapter3Working with project groups

This is a feature of
JBuilder Enterprise

Project groups are containers for projects and can be useful when working
with related projects. For example, you might have two projects that have
dependencies on each other, such as a client and a server. Another logical
grouping would be projects that use the same source files but have
different settings, such as different target application servers or different
JDKs. In addition, project groups provide other advantages, such as ease
of navigation between projects and building projects as a group.

Project groups can only contain other projects, but not other project
groups. A project group is saved as an XML file with a .jpgr file extension
and, by default, to the root of the jbproject directory. Unlike projects,
project groups aren’t saved to a project group folder, but only as a file.
Projects themselves aren’t aware of project groups and can be open
standalone and within a project group simultaneously. Changes you make
to a project in a group are also made in the standalone project.

Creating project groups
JBuilder provides the Project Group wizard, available on the Project page of
the object gallery (File|New), for creating project groups. You can create an
empty project group or populate it with projects when completing the
wizard. You can add projects to a project group at any time as described in
“Adding and removing projects from project groups” on page 3-3. Once
you’ve created a project group, you can also add new projects with the
Project wizard. When creating the new project, select the Add Project To
Active Project Group option to include it in the project group.

Projects within a project group are built in the order they appear in the
project pane. The build order is specified on Step 2 of the Project wizard
and can be changed at any time in the Project Group Properties dialog

3-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g p r o j e c t g r o u p s

box. For more information on building project groups, see “Building
project groups” on page 6-5.

To create a project group with the Project Group wizard, complete the
following steps:

1 Choose File|New and click the Project tab of the object gallery.

2 Double-click the Project Group icon to open the Project Group wizard.

3 Edit the project group file name and/or the location of the file in the
File Name field.

4 Click Next to continue to the next step.

5 Do one of the following:

a Choose the Add button, browse to a project, and select it. Click OK
to add the project. Repeat to add another project.

b Choose the Add Recursively button, select a directory to scan, and
click OK. JBuilder scans the selected directory and all its
subdirectories and adds all project files (.jpx) to the project group.

6 Select a project in the list and use the Move Up or Move Down buttons
to reorder the list of projects. Projects are built and displayed in the
project pane in the order listed.

7 Click OK to close the wizard.

The project group file is displayed at the top of the project pane and the
projects are displayed beneath it in the order added. Double-click the
project group node to expand and collapse it. Only one project in the
group can be active at a time. A project can be open independently and in
the project group simultaneously. Double-click a project to make it the
active project within the group. Expand the project’s node to see its
contents. Note that an open, active project is displayed in a bold font in the

W o r k i n g w i t h p r o j e c t g r o u p s 3-3

A d d i n g a n d r e m o v i n g p r o j e c t s f r o m p r o j e c t g r o u p s

project pane and in an italic or bold font in the project drop-down list,
depending on the look and feel. For more information about navigating
project groups, see “Navigating project groups” on page 3-4.

Once you’ve created a project group, you can close it with File|Close
Projects, with the Close button on the project pane toolbar, or by
right-clicking the project group node in the project pane and choosing
Close Project Group<Name.jpgr>. To open a project group, use File|Open
Project or File|Open File. By default, project groups are saved in the
jbproject directory, so look for project groups (files with a .jpgr extension)
in jbproject unless you specified a different location for the project group
when you created it with the Project Group wizard.

Adding and removing projects from project groups
You can add projects to and remove projects from a project group at any
time. There are several ways to do this:

• Project menu

• Project pane context menu

• Project pane toolbar

• Project Group Properties

To add a project to the open project group, do any of the following:

• Select the project group in the project pane and do one of the following:

• Choose Project|Add Project.

• Choose the Add button on the project pane toolbar and browse to
the project you want to add.

• Right-click the project group and choose Add Project.

• Choose Project|Project Group Properties, click the Add button, and
select the project you want to add.

To remove a project from the open project group, do any of the following:

• Select the project(s) in the project pane and choose Project|Remove
From Project Group.

• Right-click the project(s) in the project pane and choose Remove From
Project from the context menu.

• Select the project(s) in the project pane and choose the Remove button
on the project pane toolbar.

• Choose Project|Project Group Properties, select the project you want to
remove, and click the Remove button.

3-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

N a v i g a t i n g p r o j e c t g r o u p s

Navigating project groups
One advantage of gathering projects into groups is ease of navigation.
Although only one project is active at a time, you can quickly move from
one open project to another within the group. You can choose another
project from the project pane drop-down list. As with projects, you can
also open project groups in multiple AppBrowser windows. Choose
Window|New Browser to open another AppBrowser window.

Adding projects as required libraries
Projects within project groups often have dependencies upon each other.
If you have such a project that is dependent on another, you can add the
project upon which your project is dependent to the list of required
libraries for your project.

To add a project as a required library,

1 Choose Project|Project Properties and select the Paths page.

2 Click the Required Libraries tab.

3 Click the Add Project button.

4 Select the project you want to add.

5 Click OK.

The project you specified is added to the bottom of list of required
libraries.

6 Click OK to close the Project Properties dialog box.

Be sure that project you specified as a required library is listed ahead of
the project that depends upon it in the project group. That way you know
the required project is built first. See “Building project groups” on
page 6-5 for information about building project groups.

M a n a g i n g p a t h s 4-1

C h a p t e r

4
Chapter4Managing paths

Paths are the infrastructure of Java program development. Paths provide a
program with what it needs to run. When you set a JDK, you tell the
program what path to use to access a JDK. When you create a library, you
collate a set of paths that the program will need. Every time a file
references another file, it uses a path to get to it.

This section covers how JBuilder constructs paths, how to manipulate
paths in the Project Properties dialog box, and how to use path-based tools
such as libraries and CodeInsight features.

Working with libraries
JBuilder uses libraries to find everything it needs to run a project as well
as for browsing through source, viewing Javadoc, using the visual
designer, applying CodeInsight, and compiling code. Libraries are
collections of paths that include classes, source files, and documentation
files. Libraries are static, not dynamic. Individual library paths are often
contained in JAR or ZIP files but can also be contained in directories.

When libraries are added to JBuilder, they are added to the class path so
JBuilder can find them. Libraries are searched in the order listed. The
order of libraries can be changed in the Configure Libraries dialog box
(Tools|Configure Libraries) and on the Paths page of the Project
Properties dialog box (Project|Project Properties).

See also

• “How JBuilder constructs paths” on page 4-9

4-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

W o r k i n g w i t h l i b r a r i e s

Library configurations are saved in .library files and can be saved to
several locations:

• User Home

Saves the .library file to the <.jbuilder> directory in the user’s home
directory.

• JBuilder

This is a feature of JBuilder SE and Enterprise

Saves the .library file to the <jbuilder>/lib directory. Multiple users
who are using JBuilder on a network or sharing JBuilder on a single
machine have access to the libraries in this folder.

• Project

This is a feature of JBuilder SE and Enterprise

Saves the .library file in the current project’s directory. When using the
version control features, the .library file is checked in with the other
project files.

• User-defined folder

This is a feature of JBuilder Enterprise

Saves the .library file to a user-defined folder or shared directory. You
must add the new folder in the Configure Libraries dialog box before it
can appear in the drop-down list.

Adding and configuring libraries

There are several ways to add new libraries to your project. First, you may
want to gather your files into JAR files, especially if you plan to deploy
your program.

Once you’ve created the library, add it to JBuilder as follows:

1 Select Tools|Configure Libraries. The Configure Libraries dialog box
appears.

The left-hand pane lets you browse the available libraries. The
right-hand pane shows the settings of the selected library.

M a n a g i n g p a t h s 4-3

W o r k i n g w i t h l i b r a r i e s

2 Click the New button under the left pane to open the New Library
wizard.

3 Enter a name for the new library in the Name field.

4 Select a location from the drop-down list to save the library
configurations: Project, User Home, JBuilder, or user-defined folder.
User-defined folders are a feature of Enterprise.

5 Click the Add button and select one or more paths containing class,
source, and documentation files. JBuilder automatically determines the
correct path for the files. Click OK. Notice that the selection appears in
the Library Paths list.

6 Click OK to close the New Library wizard. Note that the library is
saved to the appropriate class, source, and documentation paths in the
Configure Libraries dialog box. You can also add, edit, remove, and
reorder the library lists in this dialog box. JBuilder Enterprise also
includes an Add Folder feature and allows you to add a framework as a

4-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

W o r k i n g w i t h l i b r a r i e s

library. For information about adding a framework as a library, see
“JSP frameworks” in the Web Application Developer’s Guide.

7 Click OK or press Enter to close the Configure Libraries dialog box.

To add the library to a project, see “Setting paths for required libraries” on
page 2-22.

You can also add libraries in the Project Properties dialog box.

1 Select Project|Project Properties.

2 Select the Required Libraries tab on the Paths page and click the Add
button.

3 Click the New button to open the New Library wizard.

See also

• “Setting paths for required libraries” on page 2-22

• “Using JAR Files: The Basics” at http://java.sun.com/docs/books/
tutorial/jar/basics/index.html

• “New Library wizard” in online help

M a n a g i n g p a t h s 4-5

W o r k i n g w i t h l i b r a r i e s

Editing libraries

To edit an existing library,

1 Select Tools|Configure Libraries.

2 Select the library you want to edit from the list of libraries.

3 Select the Class, Source, Documentation, Framework, or Required
Libraries tab to choose the library path you want to edit.

4 Select the library path and click Edit.

5 Browse to a file or user-defined folder in the Select Directory dialog
box. Click OK.

6 Click Add to browse to a library to add.

7 Select a library path and click Remove to remove it.

8 Reorder library paths by selecting a library path and clicking Move Up
or Move Down.

Tip JBuilder searches libraries in the order listed.

9 Click OK or press Enter to close the Configure Libraries dialog box.

Adding projects as required libraries

Projects can have dependencies upon other projects. If you have such a
project that is dependent on another, you can add the project upon which
your project is dependent to the list of required libraries for your project.

To add a project as a required library,

1 Choose Project|Project Properties and select the Paths page.

2 Click the Required Libraries tab.

3 Click the Add Project button.

4 Select the project you want to add.

5 Click OK.

The project you specified is added to the bottom of list of required
libraries.

6 Click OK to close the Project Properties dialog box.

4-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

P a c k a g e s

Display of library lists

There are three possible colors for libraries listed in JBuilder dialog boxes:

Packages
Java groups .java and .class files in a package. All the files that make up
the source for a Java package are in one subdirectory (src) and all
compiled files are in another subdirectory (classes). When building
applications, JBuilder uses the name of the project as the default name for
the package in the Application or Applet wizard. For instance, if the
project name is untitled1.jpx, the Application or Applet wizard suggests
using a package name of untitled1. Suggested package names are always
based on the project name.

Let’s look at a sample project to see how the package name affects the file
structure.

Note In these examples, paths reflect the UNIX platform. See “Documentation
conventions” on page 1-4 for information on how paths are documented
here.

To organize your project, you might have your project in a folder called
SampleProject. This project folder contains a project file (africa.jpx), a
classes directory and a src directory:

In creating this project, you’ll want to create your own packages to hold
related sources and classes. In this example, africa.jpx contains a package

Table 4.1 Colors in library lists

Color Description Troubleshooting

Black The library is defined
correctly.

Red The library definition
is missing.

This typically means the project refers to a library
that is not yet defined. It can also mean that the
library definition is faulty: either the library has
been defined without any paths or there is more
than one library with that name.

Gray Use of this library
requires an upgrade.

You need to upgrade your edition of JBuilder in
order to use this library. For example, if you have
JBuilder Personal, use of the dbSwing library
requires that you upgrade to JBuilder Enterprise.

M a n a g i n g p a t h s 4-7

P a c k a g e s

name of feline.africa. This package contains source files on certain felines
found in Africa: Lions, Cheetahs and Leopards.

The class files, which are saved in a directory structure that matches the
package name, are saved in the classes subdirectory within the project.
The src subdirectory, which contains the .java files, has the same structure
as the class subdirectory.

If the individual classes contained in this project are Lion.class,
Cheetah.class, and Leopard.class, these would be found in classes/feline/
africa. The source files, Lion.java, Cheetah.java, and Leopard.java, would
be in found in src/feline/africa as shown here.

.java file location = source path + package path

It’s important to understand what pieces of information JBuilder uses to
build the directory location for any given .java file. The first part of the
directory path is determined by the source path.The source path is defined
at the project level and can be modified on the Paths page of the Project
Properties dialog box.

Continuing with the SampleProject example, the source path for Lion.java
is:

/<home>/<username>/jbproject/SampleProject/src

Note For the definition of the <home> directory, see “Documentation
conventions” on page 1-4.

The second part of the directory path is determined by the package name,
which in this case is feline.africa.

Note Java nomenclature uses a period (.) to separate the levels of a package.

The .java file location for Lion.java is:

/<home>/<username>/jbproject/SampleProject/src/feline/africa/Lion.java

4-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

P a c k a g e s

See also

• “How JBuilder constructs paths” on page 4-9

.class file location = output path + package path

The directory location for the .class file is determined by the output path
and the package name. The output path is the “root” to which JBuilder
will add package paths to create the directory structure for the .class files
generated by the compiler. The output path is defined at the project level
and can be modified on the Paths page of the Project Properties dialog
box.

In the SampleProject example, the output path for Lion.class is:

/<home>/<username>/jbproject/SampleProject/classes

The second part of the directory path is determined by the package name,
which in this case is feline.africa.

As shown below, the .class location for Lion.class is:

/<home>/<username>/jbproject/SampleProject/classes/feline/africa/Lion.class

See also

• “How JBuilder constructs paths” on page 4-9

Using packages in JBuilder

When referencing classes from a package, you can use an import
statement for convenience. An import statement allows you to reference
any class in the imported package just by using the short name in the
code. (JBuilder’s designers and wizards add import statements
automatically.) Here’s an example of an import statement:

import feline.africa.*;

If this import statement is included in your source code, you could refer to
the Lion class as just Lion in the body of the code.

If you don’t import the package, you must reference a particular class in
your code with its fully qualified class name. As shown in the following
diagram, the fully qualified class name for Lion.java is feline.africa.Lion
(package name + class name without the extension).

Packages can be selectively excluded from the build process.

M a n a g i n g p a t h s 4-9

H o w J B u i l d e r c o n s t r u c t s p a t h s

See also

• “Filtering packages” on page 6-23

Package naming guidelines

The following package naming guidelines are recommended for use in all
Java programs. To encourage consistency, readability, and
maintainability, package names should be

• One word

• Singular, rather than plural

• All lowercase, even if more than one word (for example,
fourwordpackagename not FourWordPackageName)

If your packages will be shared outside your group, package names
should start with an Internet domain name with the elements listed in
reverse order. For example, if you were using the domain name
foo.domain.com, your package names should be prefixed with
com.domain.foo.

How JBuilder constructs paths
The JBuilder IDE uses several paths during processing:

• Source path

• Output path

• Class path

• Browse path

• Doc path

• Backup path

• Working directory

Paths are set at a project level. To set paths, use the Project Properties
dialog box. See “Setting project properties” on page 2-17 for more
information.

In the construction of paths, JBuilder eliminates duplicate path names.
This prevents potential problems with DOS limitations in Windows.

Note In these examples, paths reflect the UNIX platform. See “Documentation
conventions” on page 1-4.

4-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

H o w J B u i l d e r c o n s t r u c t s p a t h s

Source path

The source path controls where the compiler looks for source files. The
source path is constructed from both of the following:

• The path defined on the Source tab of the Paths page of the Project
Properties dialog box.

• The directory for generated files. This directory contains source files
that are automatically generated by the IDE. Examples of these source
files include IDL server and skeleton files. The directory for generated
files is placed in the output path. You can change this option on the
Build page of the Project Properties dialog box.

The complete source path is composed of these two elements in this order:

source path + output path/Generated Source

Using the SampleProject as an example, the source path for the africa.jpx
project is:

/<home>/<username>/jbproject/SampleProject/src

Output path

The output path contains the .class files created by JBuilder. The output
path is constructed from the path defined in the output path text box,
located on the Paths page of the Project Properties dialog box.

Files are placed in a directory whose path matches the output path + the
package name. There is only one output path per project.

For example, in the SampleProject example, the output path for the
feline.africa.jpx project is:

/<home>/<username>/jbproject/SampleProject/classes

Class path

The class path is used during compiling. This path is constructed from all
of the following:

• The output path

• The class path for each library listed on the Paths page of the Project
Properties dialog box (in the same order in which they are listed)

• The target JDK version selected on the Paths page of the Project
Properties dialog box

M a n a g i n g p a t h s 4-11

H o w J B u i l d e r c o n s t r u c t s p a t h s

The complete class path is composed of these elements in this order:

output path + library class paths (in the order libraries are listed in the
Project Properties dialog box) + target JDK version

For example, the complete class path for Lion.class is:

/<home>/<username>/jbproject/SampleProject/classes:
/user/jbuilder/lib/dbswing.jar:/

The class path is displayed in the message pane when you run the project.

Browse path

The browse path is used by the IDE when you

• Use CodeInsight.

• Choose Find Definition from the editor pop-up menu.

• Choose Search|Find Classes.

• Run the debugger.

The browse path is constructed from all of the following:

• The source path

• The source path for each library listed on the Paths page of the Project
Properties dialog box (in the same order in which they are listed)

• The source path for the target JDK version selected on the Paths page of
the Project Properties dialog box

The complete browse path is composed of these elements in this order:

source path + library source paths (in the order libraries are listed on the
Paths page of the Project Properties dialog box) + JDK target version
source path

For example, the complete browse path for Lion.class is:

/<home>/<username>/jbproject/SampleProject/src:
/user/jbuilder/src/dbswing-src.jar:
/user/jbuilder/src/dx-src.jar

Doc path

The doc path is the path or paths that contain HTML documentation files
for API class files. This allows reference documentation to be displayed in
the Doc page of the content pane.

The doc path can be set on the Paths page of the Project Properties dialog
box. Paths are searched in the order listed.

4-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

W h e r e a r e m y f i l e s ?

Backup path

JBuilder uses the backup path to store backup versions of source files. The
default backup directory is:

/<home>/<username>/jbproject/SampleProject/bak

Important JSP files, HTML files, and some other text files are not treated as source
files. These files are backed up in their original directories.

However, you can include these backups in the backup directory of your
project instead. To do so,

1 Select Project|Project Properties and look at the Paths page.

2 Select the Source page inside the Paths page.

3 Click Add in the Source page. This brings up the Select One Or More
Directories dialog box.

4 Browse to the project backup directory, select it, and click OK.

Working directory

The working directory is the starting directory that JBuilder gives a
program when it is launched. Any directory may be configured as the
working directory. By default, it has the same name as the project file.

It’s generally the parent directory of the source directory. It’s the default
parent directory of the output, backup, documentation, and library
directories.

Where are my files?
Each file in a project is stored with a relative path to the location of the
project file. JBuilder uses the source path, test path, class path, browse
path, and output path to find and save files.

This list explains the purpose of each type of path:

• The source path controls where the compiler looks for source files.

• The test path serves as the source path when you’re using unit testing.

• The class path is used during compiling and at runtime and for certain
Enterprise editor features.

• The browse path is used by the IDE when using CodeInsight, Find
Definition in the editor, searching, and debugging.

• The output path contains the .class files created by JBuilder when you
compile your project.

M a n a g i n g p a t h s 4-13

W h e r e a r e m y f i l e s ?

See also

• “How JBuilder constructs paths” on page 4-9

• “Working with libraries” on page 4-1

How JBuilder finds files when you drill down

When you drill down to explore source code, JBuilder searches for the
.java files using the browse path. For more information about drilling
down, see “Navigating in the source code” in Introducing JBuilder.

How JBuilder finds files when you compile

When you compile your project, JBuilder uses the following paths:

• class path

• source path

• output path

JBuilder looks in the class path to find the location of the .class files, the
libraries to use, and the target JDK version to compile against. The
compiler compares the .class files with their source files, located in the
source path, and determines if the .class files need to be recompiled to
bring them up to date. The resulting .class files are placed in the specified
output path.

For information about compiling files, see Chapter 6, “Building Java
programs” and Chapter 5, “Compiling Java programs.”

How JBuilder finds class files when you run or debug

When you run and debug your program, JBuilder uses the class path to
locate all classes your program uses.

When you step through code with the debugger, JBuilder uses the browse
path to find source files.

For information about debugging files, see Chapter 8, “Debugging Java
programs.”

4-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o m p i l i n g J a v a p r o g r a m s 5-1

C h a p t e r

5
Chapter5Compiling Java programs

A Java compiler reads Java source files and any other source files passed
to it and produces the Java program in the form of .class files containing
bytecodes that are the machine code for the Java Virtual Machine (VM).
Compiling produces a separate .class file for each class and interface
declaration in a source file. When you run the resulting Java program on a
particular platform, such as Windows NT, the Java interpreter for that
platform runs the bytecodes contained in the .class files. For general
information about compiling in Java, see the Java Development Kit (JDK)
compiler overview, “javac - The Java programming language compiler” at
http://java.sun.com/j2se/1.4/docs/tooldocs/tools.html.

The default compiler for the JBuilder IDE, Borland Make for Java (bmj),
has full support for the Java language. The JBuilder compiler uses smart
dependencies checking, so the compiling/recompiling cycle is faster and
more efficient. The dependency checker determines the nature of source
code changes and only recompiles the necessary files. For more
information, see “Smart dependencies checking” on page 5-2. To
understand how the JBuilder compiler works, see “Borland Make for Java
(bmj)” on page B-12.

If you prefer to compile from the command line, JBuilder also provides
the following command-line tools in JBuilder SE and Enterprise editions:

• JBuilder -build command-line option for building projects

• Borland Make for Java (bmj), which uses the dependency checker

• Borland Compiler for Java (bcj)

JBuilder also provides the option to change compilers. To take advantage
of the many JBuilder features, such as smart dependencies checking,
UML, and refactoring, it’s recommended that you use Borland Make.
However, if you wish to use javac, you can change compilers on the Build

5-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S m a r t d e p e n d e n c i e s c h e c k i n g

page of the Project Properties dialog box (Project|Project Properties). For
more information, see “Setting compiler options” on page 5-6.

Compiling is only one phase of the JBuilder build system. Other phases
include pre-compile, post-compile, clean, package, and deploy. For more
information on these phases and the JBuilder build system, see Chapter 6,
“Building Java programs.”

Smart dependencies checking
The Borland Make compiler provides fast yet complete compiling by
using smart dependencies checking, which results in fewer unnecessary
compiles of interdependent source files, and thus accelerates the edit/
recompile cycle. When compiling, instead of deciding whether to
recompile a source file based only on the time stamp of the file, Borland
Make analyzes the nature of the changes you make to source files.

There are several possible reasons for recompiling the source:

• One or more of the class files the source would produce are missing.

• The source has been modified since it was last compiled.

• One or more of the classes that the source produces depends on a
member in another class that changed.

A change in one source file may change the way other source files are
compiled. Not only can JBuilder detect this situation, but it’s capable of
noticing when a change in one source would not affect other files, because
they refer to portions that haven’t changed. In this case, JBuilder knows
not to recompile the files.

When you compile source files for the first time, a dependency file is
automatically created for each package and is placed in the output
directory along with the class files. The dependency file contains detailed
information about which class uses which for all the classes in that
package. This file has an extension of .dep2 and is saved in a folder called
package cache in the same directory as the classes.

Dependency files must be located on the class path so the compiler can
find them. When you compile in the IDE, the class path is correctly set by
default. For information on how the class path is constructed, see “Class
path” on page 4-10.

If you compile from the command line, you might need to set the CLASSPATH
environment variable. For more information, see “Setting the
CLASSPATH environment variable for command-line tools” on page B-2.

Smart dependencies checking is used by Borland Make in the IDE and by
the bmj command-line make but not by the bcj command-line compiler.
bmj and bcj are available in JBuilder SE and Enterprise editions.

C o m p i l i n g J a v a p r o g r a m s 5-3

C o m p i l i n g a p r o g r a m

Important Libraries are considered “stable” and are not checked by the dependency
checker.

See also

• “JBuilder dependency checker” on Blake Stone’s home page at http://
homepages.borland.com/bstone/articles/depchecker.html

Compiling a program
The JBuilder IDE uses Borland Make for Java (bmj) to compile Java source
files. Because the JBuilder compiler uses smart dependencies checking, the
compiling/recompiling cycle is faster and more efficient. For more
information, see “Smart dependencies checking” on page 5-2. To
understand how the JBuilder compiler works, see “Borland Make for Java
(bmj)” on page B-12.

The following parts of a program can be compiled:

• The entire project

• Packages

• Java files

To understand how JBuilder locates files to compile the program, see
“How JBuilder constructs paths” on page 4-9 and “Where are my files?”
on page 4-12.

To compile the source files for a program:

1 Open the project containing the program or open a single Java file.

2 Do one of the following:

• Choose Project|Make Project.

• Right-click a Java file(s) in the project pane and choose Make
<filename>.

• Right-click the file tab of an open Java file in the editor and choose
Make <filename>.

• Choose the Make Project button on the toolbar.

JBuilder build menus

JBuilder provides menu commands for building your project: Make,
Rebuild, and Clean.

Make is a phase of the JBuilder build system that establishes dependencies
among other standalone phases: pre-compile, compile, post-compile,

5-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o m p i l i n g a p r o g r a m

package, and deploy. The JBuilder Make command is not to be confused
with the Java compile make, which only compiles Java source files. The
Make command builds Java source files as well as other buildable files in
your project, such as archive files, WebApps, and other buildable nodes.

JBuilder also provides the Rebuild command for completely rebuilding
your project. The Rebuild command has clean and make as its
dependencies. First, all the build output is deleted, then make is executed.
Lastly, the Clean command deletes all the build output.

In JBuilder Enterprise, the build menus are configurable. For more
information, see “Configuring the Project menu” on page 6-18.

See also

• “The Make command” on page 6-3

• “The Rebuild command” on page 6-4

• “The Clean command” on page 6-5

Building projects with the Run command
The Run command can be set to execute a build target before running the
project. The default behavior of the Run Project command (Run|Run
Project) and the Run Project button is to make and run your application.
The default behavior can be changed in the run configurations for the
project. For example, you might want to rebuild your project each time
before you run it, instead of using the default make. Available build
targets vary by the type of project you are working on. Other available
targets might include rebuild, clean, none, external build tasks, Ant
targets, and any custom build tasks you’ve added in extending the build
system through the Open Tools. For information on how to change the
build target, see “Build Targets” on page 7-10.

See also

• “Using the Run command” on page 7-3

• “Building Ant projects with the Run command” on page 6-12

Syntax errors and error messages

Syntax errors are errors that violate the syntactical rules of the Java
programming language. The editor catches these errors as they occur,
before you compile. Syntax errors are displayed in a folder at the top of
the structure pane. To locate the line of code containing the error, expand
the Errors folder in the structure pane and double-click the error. The line
containing the error is highlighted in the editor.

C o m p i l i n g J a v a p r o g r a m s 5-5

C o m p i l i n g a p r o g r a m

Error messages also appear on the Build tab in the message pane during
compiling. Select an error message and press F1 for Help. Use the arrow
keys to navigate through compiler error messages. Click an error message
to highlight the code in the open file. Double-click an error message to
move the cursor to the line of code in the editor.

See also

• “Error and warning messages” in online help

• “Compiler error messages” in online help, where error messages are
listed by number

Compile problems when opening projects

If you open a project and it won’t compile, check the path settings on the
Paths page of the Project Properties dialog box to make sure they are set
correctly. JBuilder uses the path settings to construct the class path and
source path, which is where the compiler looks for files.

Additionally, check the Required Libraries list on the Paths page. If one or
more of the libraries is highlighted in red, it’s not defined for your
installation of JBuilder. Double-click the library name or select it and
choose Edit to define it. Then, recompile the project.

Projects with WebApps may need a properly configured web server to
compile. See “Configuring your web server” in Web Application Developer’s
Guide.

To set default paths for new projects (to avoid future potential problems),
use the Default Project Properties dialog box (Project|Default Project

5-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g c o m p i l e r o p t i o n s

Properties). See “Setting project properties” on page 2-17 and “How
JBuilder constructs paths” on page 4-9.

Checking for package/directory correspondence

JBuilder provides protective checking for duplicate class definitions in a
project and for package/directory correspondence. The bmj compiler,
which is the default compiler in the IDE, verifies that the package
statement in a source file corresponds to the package directory and that
two source files do not define the same class.

The first time you build a project, all the available .java files in a package
directory are verified and compiled. If you have temporary sources that
you do not want to compile, you should use another extension besides
.java. For example, if the project contains an old version of a file you are
working on and that file contains another definition of the same class,
you’ll get a “duplicate class definition” error. This checking prevents
subtle problems that would be difficult to locate.

Setting compiler options
You can specify compiler options for the current project on the Java page
of the Build page of Project Properties (Project|Project Properties). The
options, which vary according to the compiler selected, are applied to all
files in the project tree. If you change compiler options, you should
rebuild your packages or your entire project and not just make them. The
project options are applied to any class being rebuilt, outside the project
tree as well as inside the project tree.

You can’t set compile options per file. However, a file can be used by two
projects, both of which have different settings for compiling. Applying
options on classes or packages individually is not supported, because
there is no separate compilation of headers and modules in Java. If some
import information is missing (such as a class file), the imported class is
compiled at the same time as the importing class, using the same
project-wide options.

You can also set compiler options for future projects in the Default Project
Properties dialog box (Project|Default Project Properties). After setting
default project properties, whenever you create a new project with the
Project wizard, the default settings are applied.

If you compile your project with Borland Make, compiler options are
applied to all files in the project tree and to files referenced by these files,
stopping at packages that are marked stable and have no classes in the
project tree. Borland Make provides additional compiler options, such as
Obfuscate, Synchronize Output Dir, and Exclude Class. For more

C o m p i l i n g J a v a p r o g r a m s 5-7

S e t t i n g c o m p i l e r o p t i o n s

information on these options, choose the Help button on the Java page of
the Build page.

To set compiler options for your project, complete the following steps:

1 Choose Project|Project Properties or right-click the .jpx project node in
the project pane and choose Properties. The Project Properties dialog
box is displayed.

2 Select the Build tab to display the Build page. Then select the Java tab.

3 Select a compiler and any debug and compiler options that you want.
The available compiler options vary according to the compiler selected.
For more information on the options, see the Build page of the Project
Properties dialog box (Project|Project Properties). Switching compilers
is a feature of JBuilder Enterprise.

4 Set any desired options on other pages of the Build page.

5 Choose OK to close the Project Properties dialog box and save your
settings.

6 Choose Project|Rebuild Project to rebuild your project with the revised
settings.

7 Click OK to close the dialog box.

5-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g t h e o u t p u t p a t h

Specifying a compiler

This is a feature of
JBuilder Enterprise

By default, JBuilder compiles projects with Borland Make for Java (bmj).
Generally, it’s recommended that you compile with the Borland compiler
to take full advantage of the JBuilder features, such as dependencies
checking and refactoring. Other available compilers include javac and the
Project javac. When you choose javac as the compiler, the project is
compiled using the host JDK javac, which is located in the JBuilder
directory. If Project javac is selected, JBuilder uses the JDK’s javac
specified for the project on the Paths page (Project|Project Properties).
When you choose a compiler, only options available to that compiler are
enabled.

To change the compiler for the project, complete the following steps:

1 Choose Project|Project Properties.

2 Choose the Build page and click the Java tab.

3 Choose a compiler from the Compiler drop-down list.

4 Click OK to close the dialog box.

Setting additional compiler and build options

On the Java page of the Build page of Project Properties (Project|Project
Properties), you can choose a compiler, debug options, target VM, and
other compiler options, such as Show Warnings, Show Deprecations, and
Enable Assert Keyword. For more information on these options, choose
the Help button on the Java page of the Build page. There are also
additional options on the General page of the Build page that affect
building.

Setting the output path
You can set the output path for your compiled class files in the Project
Properties dialog box.

To set the output path,

1 Choose Project|Project Properties.

C o m p i l i n g J a v a p r o g r a m s 5-9

C o m p i l i n g p r o j e c t s w i t h i n a p r o j e c t g r o u p

2 Choose the Paths tab to display the Paths page.

3 Choose the ellipsis (...) button to the right of the Output Path field.

4 Browse to the directory you want your compiled class files to be saved
in and select it. If the directory does not exist, select the New Folder
button and create one. Click OK.

5 Click OK to close the dialog box.

See also

• “How JBuilder constructs paths” on page 4-9

• “Where are my files?” on page 4-12

Compiling projects within a project group
This is a feature of
JBuilder Enterprise

For information on compiling projects within a project group, see
“Building project groups” on page 6-5.

Compiling from the command line
These are features of

JBuilder SE and
Enterprise

You can compile from the command line using the bmj or bcj commands.
To see the syntax and list of options, type bmj or bcj at the command line
from the <jbuilder>/bin directory. You can also build a project from the
JBuilder command line. You might need to set the CLASSPATH environment
variable for the command line, so that the required classes are found.

5-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o m p i l i n g f r o m t h e c o m m a n d l i n e

bmj (Borland Make for Java)

This is a feature of
JBuilder SE and

Enterprise

The bmj compiler is the Borland Make for Java. bmj compiles any .java
files that have outdated or nonexistent .class files. bmj also compiles any
imported classes that have outdated or nonexistent .class files.

bmj looks for dependency files on the class path, and does dependencies
checking. If you specify a set of sources, some or all of those sources might
not be recompiled. For example, the class files might be determined to be
up to date if they have been saved but not edited since the last compile.
You can force recompilation using the -rebuild option.

To check a set (or “graph”) of interdependent modules, it is sufficient to
call bmj on the root source (or multiple root sources if one is not under the
other). You can specify this argument using source names, package
names, class names, or a combination.

See also

• “Borland Make for Java (bmj)” on page B-12

• “Setting the CLASSPATH environment variable for command-line
tools” on page B-2

bcj (Borland Compiler for Java)

This is a feature of
JBuilder SE and

Enterprise

The bcj compiler is the Borland Compiler for Java. bcj compiles the
specified sources, whether or not their .class files are outdated. It also
compiles any directly imported .java files that do not have .class files.
Imported .java files that already have .class files aren’t recompiled, even
if their .class files are outdated. After using bcj, some imported classes
might still have outdated .class files.

bcj does not do dependencies checking and does not use or generate a
dependency file. bcj only compiles the items you specify.

See also

• “Borland Compiler for Java (bcj)” on page B-7

• “Setting the CLASSPATH environment variable for command-line
tools” on page B-2

Building a project from the command line

This is an option in
JBuilder SE and

Enterprise

You can build project files and specify build targets from the JBuilder
command line using the -build option from the <jbuilder>/bin directory.
For more information, see “JBuilder command-line interface” on page B-4.

C o m p i l i n g J a v a p r o g r a m s 5-11

C o m p i l i n g f r o m t h e c o m m a n d l i n e

Switching between the command line and IDE

If you edit a file outside the IDE, be sure to include its package or at least
one of that package’s sources in your project, so that the package is
checked when you compile. Otherwise, the change isn’t detected and the
source isn’t recompiled.

5-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B u i l d i n g J a v a p r o g r a m s 6-1

C h a p t e r

6
Chapter6Building Java programs

Build features vary by
JBuilder edition

JBuilder’s build system, based on the Java-based build tool Ant, involves
various build phases. Build phases, which are special targets that the build
system always creates for every build process, can include such build
tasks as preparing non-Java files for compiling, compiling Java source
files, archiving, deploying, and so on. The build system can be customized
and extended with the OpenTool Builder class.

The JBuilder compiler, Borland Make for Java (bmj), has full support for the
Java language, including inner classes and JAR files. Because the JBuilder
compiler uses smart dependencies checking, the compiling/recompiling
cycle is faster and more efficient. The dependency checker determines the
nature of the changes and recompiles only the necessary files.

See also

• “Smart dependencies checking” on page 5-2

• “Compiling Java programs” on page 5-1

• “Borland Make for Java (bmj)” on page B-12

The JBuilder build system
JBuilder’s build system uses Ant, an open source, Java-based build tool,
programmatically to execute builds as opposed to using static Ant build
files. The build system, also extensible as an OpenTool, has several
advantages and allows you to do the following:

• Extend the build system with an OpenTool and track the output.

• Specify dependencies between build targets, a feature of JBuilder
Enterprise.

6-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e J B u i l d e r b u i l d s y s t e m

• Build project groups, a feature of JBuilder Enterprise.

• Build existing Ant projects in JBuilder, a feature of JBuilder Enterprise.

• Filter packages and remove them from the build process, a feature of
JBuilder SE and Enterprise.

See also

• “JBuilder Build System Concepts” in the OpenTools online Help

• “Building project groups” on page 6-5

• “Building with external Ant files” on page 6-7

• “Filtering packages” on page 6-23

Build system terms

The following terms are used in discussing the build system.

Build phases

The build phases in the JBuilder IDE include six standalone phases
without dependencies and two phases that establish dependencies among
the other phases. Every JBuilder project has the following standalone
phases: clean, pre-compile, compile, post-compile, package, and deploy.
Because each phase is standalone, a phase can be executed without
needing to execute any other phase. Each phase has its own targets as
dependencies. For example, SQLJ is a dependency of the Post-compile
phase.

Two additional phases establish dependencies among the six standalone
phases: make and rebuild. Make has these dependencies in the order
listed: pre-compile, compile, post-compile, package, and deploy. Rebuild
has clean and make as dependencies.

Table 6.1 Build system terms

Term Definition

Build task A piece of code that can be executed during the build process, such as
java compilation, FTP, creating a JAR file, and so on.

Target Collections of zero or more build tasks to be executed. Targets can
have dependencies on other targets. For example, if target A depends
on targets B and C, B and C are executed before A is executed.

Phase Special targets that the JBuilder build system always creates for every
build process. There are eight phases: six standalone phases without
dependencies (clean, pre-compile, compile, post-compile, package,
and deploy) and two phases that establish dependencies among
phases (make and rebuild). Each phase has its own specific targets.

B u i l d i n g J a v a p r o g r a m s 6-3

T h e J B u i l d e r b u i l d s y s t e m

Because the JBuilder build system is exposed as an OpenTool, you can
create your own build tasks and specify existing phases as dependencies
or not tie into the existing phases at all. See “JBuilder build system
concepts” in the OpenTools online Help for more information on
extending the build system. See the Obfuscator sample in the JBuilder
samples/opentoolsAPI/Build directory for a sample on creating Builders.

The Make command
Make is a phase that establishes dependencies among the standalone
phases. Make has the following dependencies in the order listed:
pre-compile, compile, post-compile, package, and deploy.

The Make command is not to be confused with the Java compile make,
which only compiles Java source files. For more information about the
JBuilder compiler, see “Borland Make for Java (bmj)” on page B-12 and
“Smart dependencies checking” on page 5-2.

Make executes various build tasks, depending on the nodes selected. The
selected nodes can be a project, packages, Java source files, or other
appropriate nodes, such as archive, documentation, WebApp, external
build task, or Ant target nodes. For example, if you make an archive node,
an archive file is generated. When you make a package, Java source files
are compiled and resources in these packages are copied to the project’s
output path. Making a project compiles the Java source files in the project,
as well as executing the appropriate build tasks on any buildable nodes.

Table 6.2 Build system phases

Standalone phases
Term Definition
Clean Removes all build output, such as .class files, JARs, and so on.

Pre-compile Tasks that occur before compiling. IDL files, which are converted
to Java source files before compiling, are examples of a
Pre-compile target.

Compile Generation of Java class files from Java source files.

Post-compile Tasks that occur after compiling. This phase requires Java class
files to be executed. java2iiop and obfuscated code could be
targets of this phase.

Package Tasks that generate archive files.

Deploy Tasks that move deployed files to another location. For example,
this phase might have a task to FTP files.

Phases that establish dependencies
Term Definition
Make Make establishes dependencies among the standalone phases in

this order: pre-compile, compile, post-compile, package, and
deploy.

Rebuild Rebuild has clean and make as dependencies.

6-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e J B u i l d e r b u i l d s y s t e m

There are several ways to make a file, project, package, or other
appropriate node:

• Choose Project|Make Project.

• Choose Project|Make <filename>.

• Choose the Make Project button on the toolbar, if available.

• Right-click a node in the project pane and choose Make.

• Right-click the file tab in the content pane and select Make <filename>.

In addition, in JBuilder Enterprise, you can make a project group. For
more information on project groups, see Chapter 3, “Working with project
groups.”

The Rebuild command
Rebuild is another phase that establishes dependencies among the
standalone phases. It has clean and make as dependencies. Rebuild
deletes all the build output with clean, then does a make. The selected
node can be anything that’s buildable that supports clean. Some examples
include projects, packages, Java source files, archives, and resources.

Because Rebuild executes clean and then make, it takes longer than make.
But it’s useful if you want a clean build. For example, if you’ve deleted
Java source files, you would use Rebuild. Rebuild executes Clean, which
removes all of the build output, including the class files. Then make is
executed. If you were to do a make after deleting the Java source files,
their class files would still exist.

Important If you change any debug or obfuscation options on the Build page of
Project Properties, you must rebuild your project for these changes to take
effect.

There are several ways to rebuild a file, project, package, or other
appropriate node:

• Choose Project|Rebuild Project.

• Choose Project|Rebuild <filename>.

• Right-click a node in the project pane and choose Rebuild.

• Right-click the file tab in the content pane and select Rebuild
<filename>.

• Choose the drop-down list next to the Make button on the toolbar and
choose Rebuild Project.

In addition, in JBuilder Enterprise, you can rebuild a project group. For
more information on building project groups, see “Building project
groups” on page 6-5.

B u i l d i n g J a v a p r o g r a m s 6-5

B u i l d i n g p r o j e c t g r o u p s

The Clean command
The Clean command removes all build output of the other targets, such as
the classes directory, JARs, WARs, and so on. If the source and output
paths are the same, the output directory is not deleted but the build
output is deleted. What Clean removes is dependent upon the node
selected:

• Project nodes: recursively deletes the output directory. This only occurs
if the output directory is a subdirectory of the project. Clean doesn’t
delete the output directory if it’s the same as the source directory or a
subdirectory of the source directory.

• Java nodes: deletes the corresponding .class files and any generated
files, such as java2iiop. Also removes resources.

• Package nodes: deletes the corresponding .class files and any
resources.

• Resource nodes: deletes the copies in the output directory.

• Documentation nodes: deletes all HTML and HTM files in the Javadoc
output directory.

• Archive nodes: deletes the archive file(s) and executables.

• WebApp nodes: deletes any WAR files and the WEB-INF/lib and WEB-INF/
classes directories.

There are several ways to Clean:

• Right-click the project file in the project pane and choose Clean.

• Right-click an appropriate node or nodes in the project pane and
choose Clean.

As with the Make and Rebuild commands, the Clean command only
appears on the context menu when appropriate nodes are selected.

Building project groups
This is a feature of
JBuilder Enterprise

Using project groups allow you to control the build order of the projects
within the group. This is particularly useful if one project is dependent on
another. In this case, you would want to build the dependency first. For
example, if project B is dependent on project A, you would build project A
first, then project B.

The build order of projects within a project group can be modified on the
Build Order page of the Project Group Properties dialog box (Project|
Project Group Properties).

6-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B u i l d i n g p r o j e c t g r o u p s

See also

• Chapter 3, “Working with project groups”

Specifying the build order for a project group

The build order of a project group is determined by the order of the
projects in the project pane. For example, if a project group has two project
nodes, project1.jpx and project2.jpx, and project1.jpx is the first child
node of the project group, then JBuilder builds project1.jpx first and
project2.jpx last. The build order can be changed in the Project Group
Properties dialog box.

Controlling the build order in a project group can be especially useful if a
project has another project added as a required library. If you want the
required project built first, then you need to put both projects in a project
group and have the required project first in the project group. For more
information, see “Adding projects as required libraries” on page 3-4.

To change the build order in a project group,

1 Open Project Group Properties:

• Choose Project|Project Group Properties.

• Right-click the project group node in the project pane and choose
Properties.

2 Click the Build Order tab on the Build page.

3 Select a project in the list and use the Move Up or Move Down buttons
to reorder the build order.

Tip You can also add projects in the Project Group Properties dialog box.
Choose the Help button for more information.

4 Click OK to close the dialog box. Notice that the order of projects in the
project pane changes according to the new build order you just specified.

Building a project group

To build or rebuild a project group,

1 Specify the build order of the subprojects in the group as described in
“Specifying the build order for a project group” on page 6-6.

2 Do one of the following:

• Choose Project|Make Project Group or Project|Rebuild Project
Group.

• Right-click the project group file (.jpgr) in the project pane and
choose Make Project Group or Rebuild Project Group.

B u i l d i n g J a v a p r o g r a m s 6-7

B u i l d i n g w i t h e x t e r n a l A n t f i l e s

Make Project Group and Rebuild Project Group are also on the toolbar. By
default, Make Project Group is the button on the toolbar and Rebuild
Project Group is on the drop-down list next to the button. If you add any
custom targets, they’re also displayed on the drop-down list. The first two
menu choices of the project group build portion of the Project menu are
assigned keyboard mappings.

See also

• “The Make command” on page 6-3

• “The Rebuild command” on page 6-4

Adding project group build targets to the Project menu

JBuilder allows you to add new targets to the Project menu for project
groups and to customize the menu order. You can add a Clean Project
Group menu command, as well as custom targets that specify a collection
of build targets to execute with one menu command. Any targets that are
added to the Project menu also display on the context menu. For more
information, see “Configuring the Project menu for project groups” on
page 6-19.

Building with external Ant files
This is a feature of
JBuilder Enterprise

If you have an existing project that already uses Ant, you can run Ant in
JBuilder. Ant is a Java-based build tool that uses build files written in
XML. The build files use a target tree where various tasks are executed. A
target, which is a set of tasks to be executed, can depend on other targets.
Examples of targets include compiling, packaging into JARS for
distribution, cleaning directories, and so on.

For example, the following build file example has two targets, init and
compile. The init target executes a task that creates a build directory. The
compile target, which depends on the init target, executes the javac task
on the src directory and sends the compiled classes to the build directory.
Because compile is dependent on init, init must execute first. The build
directory must be created before the classes can be compiled. Build files
also have a default target, compile in this example, which is executed if a
target isn’t specified.

Build files can have a set of properties that have a case-sensitive name and
a value. Properties can be used as values in tasks and are surrounded
by ${ }. In this example, the property build has a value of build. The init
target, when it executes the <mkdir dir="${build}"/> task, creates a build
directory according to the property value, build.

6-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B u i l d i n g w i t h e x t e r n a l A n t f i l e s

Build file example

<?xml version="1.0" encoding="UTF-8"?>
<project name="MyProject" default="compile" basedir=".">
<!--
 [property definitions]
 [path and patternset]
 [targets]
-->
<property name="build" value="build"/>
<property name="src" value="src"/>
 <target name="init">
 <mkdir dir="${build}"/>
 </target>
 <target name="compile" depends="init">
 <javac srcdir="${src}" destdir="${build}"/>
 </target>
</project>

For more about build files, see the Ant documentation in the JBuilder
extras/Ant/docs/ directory or at http://jakarta.apache.org/ant/manual/
using.html#buildfile.

See also

• Chapter 18, “Tutorial: Building with Ant files”

• The Jakarta project at Apache: http://jakarta.apache.org/ant

• Ant documentation at http://jakarta.apache.org/ant/manual/index.html

• Ant documentation in the JBuilder extras/ant/docs/ directory

Adding Ant build files to projects

There are two ways to add Ant build files to a project: automatically with
the Ant wizard or manually with Project|Add Files/Packages. If you add
build files with the Ant wizard, JBuilder automatically recognizes them as
Ant nodes and displays Ant icons for the build file nodes. If you add your
build files manually with Project|Add Files/Packages, build files named
build.xml are the only files recognized as Ant build files. You can use other
names for the build files, but you must set an option in the node
properties for JBuilder to recognize them as Ant files. Also, when the Ant
build file is named build.xml, the relative path to the file displays in the
project pane. For more information on changing the properties for Ant
nodes, see “Setting Ant properties” on page 6-12.

B u i l d i n g J a v a p r o g r a m s 6-9

B u i l d i n g w i t h e x t e r n a l A n t f i l e s

Adding Ant files with the Ant wizard
The easiest way to add Ant build files to your project is with the Ant
wizard. The wizard automatically sets the property for the file to an Ant
build file, so JBuilder recognizes it as an Ant node, regardless of the file
name. Once you’ve added a build file to the project with the wizard, it’s
displayed in the project pane with an Ant icon.

To add an Ant build file with the wizard,

1 Choose File|New, click the Build tab of the object gallery, and
double-click the Ant icon or choose Wizards|Ant.

2 Do one of the following:

• Choose the Add button, browse to any build XML files that you
want to add, and click OK. When you use the Add button, any XML
file that you add automatically has its property set to an Ant build
file so JBuilder recognizes it as an Ant node, regardless of the file
name. Once you’ve added a build file with the Add button, it
displays in the project pane with an Ant icon.

• Choose the Add Recursively button, select a directory, and click OK.
JBuilder scans all files named build*.xml in the selected directory and
all its subdirectories and adds them to the project.

3 Click OK to close the wizard.

Adding Ant files manually
If you manually add Ant build files to your project, they must be named
build.xml for JBuilder to recognize them automatically. If a file has a
different name, it displays in the project pane with the usual XML icon.
For JBuilder to recognize it as an Ant file, you must set the node properties
as described in the last step here.

6-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B u i l d i n g w i t h e x t e r n a l A n t f i l e s

To add an Ant build file manually,

1 Choose the Add Files/Packages button on the project pane toolbar or
choose Project|Add Files/Packages.

2 Browse to and select the build file you want to add.

3 Click OK.

Note If the Ant build file isn’t named build.xml, change the node properties
for the file. Right-click the build file in the project pane and choose
Properties. Choose the Ant tab on the Properties page and select the
Ant Build File option. Click OK to close the Properties page. The build
file displays with an Ant icon.

Creating and editing Ant build files

If you don’t have an existing build file, you can create one in the JBuilder
editor, which also provides syntax highlighting. You can also use the
JBuilder editor to edit any existing Ant build files. To create a new build
file in JBuilder,

1 Open a project or create a new one.

2 Choose File|New File.

3 Enter a file name in the Name field, choose XML as the file extension
from the Type drop-down list, specify a directory for the file, and click
OK. If you name the file build.xml, it’s automatically recognized as an
Ant build file. If the file isn’t named build.xml, you need to set the Ant
Build File option in the Ant properties, so JBuilder will recognize it as
an Ant node. See “Setting Ant properties” on page 6-12.

4 Enter text in the new file open in the editor.

5 Choose Project|Add Files/Packages, select the new file, and click OK
to add it to your project.

6 Click OK to save the new file to your project.

7 Input the appropriate build information in the new file in the editor
and save the file.

8 Click the refresh button and expand the Ant node in the project pane to
display the targets.

Importing existing Ant projects

If you already have an existing Ant project that you’d like to work with in
JBuilder, use the Project For Existing Code wizard. The Project For
Existing code wizard creates a new JBuilder project from an existing body
of work, deriving paths from the directory tree. JBuilder automatically

B u i l d i n g J a v a p r o g r a m s 6-11

B u i l d i n g w i t h e x t e r n a l A n t f i l e s

recognizes Ant build.xml files and adds them to your new JBuilder project.
If the Ant build file isn’t named build.xml, you need to set the Ant Build
File option on the Ant properties page. See “Setting Ant properties” on
page 6-12. To open the Project For Existing Code wizard, choose File|
New, click the Project tab, and double-click the Project For Existing Code
icon.

Building Ant projects

When you work with an Ant project, you can run Ant as part of the
JBuilder build process. To do this, you must set the Always Run Ant
When Building Project option for any Ant nodes that you want to include
in the build process. See “Setting Ant properties” on page 6-12. Once
you’ve set this option, the Make Project and Rebuild Project commands
run Ant as part of the JBuilder build process. If this option is off, the Make
Project and Rebuild Project commands run the JBuilder build process
without running Ant. See “Building Ant projects with the Run command”
on page 6-12.

Tip You can add Ant targets to the Project menu and the toolbar. See
“Configuring the Project menu” on page 6-18.

You can also run Ant manually from the project pane. Simply right-click
the Ant node and choose Make to run the default target in the Ant build
file. The default target is a value specified in the <project> element. To run
several targets in the build file, select one or more of the target nodes,
right-click, and choose Make.

Note JBuilder might use different paths and directories for source files, class
files, and other files. You can change the JBuilder paths to match your Ant
targets on the Paths page of Project Properties. You can also change the
Ant paths by changing the Ant properties. See “Setting Ant properties” on
page 6-12.

Output from Ant displays on the Build tab of the message pane. Two
nodes can display messages:

• StdErr: displays the standard error output stream.

• StdOut: displays the standard output stream.

To navigate to files with errors in them, click the error messages in the
message pane. Double-click an error to move the cursor to the error in the
code.

If you want to pass different target parameters but not modify the build
file, right-click the Ant node, choose Properties, and add the parameters.
See “Setting Ant properties” on page 6-12.

6-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B u i l d i n g w i t h e x t e r n a l A n t f i l e s

Specifying the JDK
By default, Ant uses the JDK shipped with JBuilder to build projects. In
some cases, you might have your project using a different JDK. If you
want Ant to use the same JDK as your project, you can set the Use Project
JDK When Running Ant option in the Project Properties.

To set Ant to use the project’s JDK,

1 Choose Project|Project Properties.

2 Click the Build tab, then the Ant tab.

3 Check the option, Use Project JDK When Running Ant.

4 Click OK to close the dialog box.

Building Ant projects with the Run command
When you run an Ant project in JBuilder with the Run Project command
(Run|Run Project), JBuilder runs the default build target, Make. Then,
JBuilder runs the project without running Ant. If you want to also run Ant
with this command, you must set the Always Run Ant When Building
Project option for any Ant nodes that you want to include in the build
process. Then JBuilder runs make for the JBuilder build process and Ant,
using the default Ant target in the build file. See “Setting Ant properties”
on page 6-12. Once this option is set, choosing the Run Project command
builds the project with Ant on the specified nodes as part of the JBuilder
build process, then runs the program.

In addition, you can change the default Make build target that executes
before running the program. For example, you might want to execute an
Ant target before running the project. The Always Run Ant When
Building Project option doesn’t need to be selected in this case. The build
target is specified in the runtime configurations in the Runtime Properties
dialog box (Run|Configurations). For information on how to change the
build target, see “Build Targets” on page 7-10.

See also

• “Building projects with the Run command” on page 5-4

• “Using the Run command” on page 7-3

Setting Ant properties

An Ant project can have a set of properties. Many Ant targets and tasks
are typically “property-aware.” For example, there is a property,
build.compiler, that specifies which compiler the javac task uses. You can
also specify whether a task is executed based on the existence or
non-existence of a property. Properties are also the mechanism used to

B u i l d i n g J a v a p r o g r a m s 6-13

B u i l d i n g w i t h e x t e r n a l A n t f i l e s

pass parameters to tasks without overriding the existing properties in the
build file.

You can pass parameters and control the options for launching Ant in the
Properties dialog box for the build file. Right-click the Ant node in the
project pane, choose Properties, and click the Ant tab. In the Properties
dialog box, you can set such options as:

• Ant Build File

Select this option to identify the XML file as an Ant build file. If a build
file is named build.xml, this option is selected by default and disabled.

• Show Relative Path

Select this option to display the relative path in the project pane for any
Ant build file named build.xml.

• Log Level

Choose quiet, normal, verbose, or debug for message output.

• Use Log File

Output messages to a log file instead of the message pane.

• Properties

Add new properties and modify existing properties without
overwriting them in the build file. Modifications are saved in the
<project>.jpx file, not in the XML file.

• Use Borland Java Compiler

Use Borland Java Compiler (bmj) for javac tasks.

• VM Parameters

Specify any additional VM parameters when running Ant as an
external process from within JBuilder. For example, if you want the
maximum heap of the Java VM in which you are running Ant to be
256MB, enter -Xmx256m in the VM Parameters field.

• Task Scheduling:

Specify the build phase in which the build file is executed and choose
the targets that execute before and after the Ant file is built.

• Always Run Ant When Building Project

Run Ant on any Ant node that has this option selected when building
the project.

Important When you’re using JBuilder features, such as refactoring, it’s
recommended that you accept the default option Use Borland Java
Compiler. When it’s selected and you have any javac tasks in your
build.xml file, those tasks will use bmj. For example, bmj puts additional
information in its dependency files that allows refactoring to work for

6-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B u i l d i n g w i t h e x t e r n a l A n t f i l e s

certain edge cases, where the necessary information for refactoring cannot
be gleaned from .class files alone.

For more information on setting Ant properties, choose the Help button
on the Ant properties dialog box.

Ant options
You can enter additional Ant options in the Additional Options field of
the Properties dialog box.

Options include:

-help print this message
-projecthelp print project help information
-version print the version information and exit
-emacs produce logging information without adornments
-logger classname the class that is to perform logging
-listener classname add an instance of class as a project listener
-find file search for buildfile towards the root of the filesystem
 and use the first one found

Adding custom Ant libraries

If your Ant targets require any Ant libraries, you can add them to your
project on the Build page of the Project Properties dialog box.

B u i l d i n g J a v a p r o g r a m s 6-15

B u i l d i n g S Q L J f i l e s

1 Choose Project|Project Properties and click the Build tab.

2 Choose the Ant tab.

3 Add libraries as needed and click OK.

4 Reorder the libraries in the list using the Move Up and Move Down
button.

Note The libraries are searched in the order listed.

5 Click OK to close the dialog box.

You can also use a different version of Ant by adding a library with the
Ant JARs. If you don’t specify any Ant JARs, JBuilder uses the Ant
delivered in the JBuilder lib directory.

Building SQLJ files
This is a feature of
JBuilder Enterprise

The JBuilder build system provides support for building SQLJ files. SQLJ
combines the Java programming language with SQL (Structured Query
Language), which is used to access relational databases. SQLJ,
complementary to JDBC, allows a Java program to access a database using
embedded SQL statements. Once the SQL statements are embedded, a
SQLJ translator is run on the program. The translator converts the SQLJ
program to Java and replaces the SQL statements with calls to the SQLJ
runtime. Then, the Java program is compiled and run against the
database. While SQLJ supports only static SQL, you can use it in
combination with JDBC in an application to also work with dynamic SQL.

For more information on SQL and databases, see the Database Application
Developer’s Guide.

JBuilder recognizes .sqlj files in the build process. To generate .sqlj files,
you must first configure a translator and then specify one for your project
as follows:

1 Configure DB2 or Oracle SQLJ in the Enterprise Setup dialog box as
follows:

a Choose Tools|Enterprise Setup and choose the SQLJ tab.

b Select a SQLJ configuration to set up, such as Oracle or DB2.

c Browse to the location of the executable file.

d Enter any additional options.

e Add any SQLJ-dependent libraries and JDBC drivers required by the
SQLJ translator. Check the DB2 or Oracle documentation to see
which JARs are need on your CLASSPATH. Create a library of these
JARs with the New Library wizard and add it to your SQLJ setup.

f Click OK to close the Enterprise Setup dialog box.

6-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g e x t e r n a l b u i l d t a s k s

2 Specify the SQLJ translator to use for your project:

a Choose Project|Project Properties and choose the Build tab.
b Choose the General tab on the Build page.
c Choose a SQLJ translator for the project.
d Click OK to close the Project Properties dialog box.

Once your project has an active SQLJ translator, SQLJ is run against any
.sqlj files in your project as part of the build process, and the generated
.java files appear as children of the SQLJ node. The generated .java files
are then compiled as part of the overall build process.

See also

• SQLJ.org at http://www.sqlj.org

Creating external build tasks
This is a feature of
JBuilder Enterprise

There may be cases where you want to execute external tasks whenever
you build a project. For example, you might have a .bat or .exe on
Windows or a .sh or executable on Linux or UNIX that you want to
execute every time you do a build. Examples of external tasks are: passing
compiled files to an obfuscator after the Package phase, deploying a
program and checking it into CVS, or passing a program to a preverifier
after compiling. With the External Build Task wizard, you can create
external tasks that allow you to execute external shell or console
commands as part of the build process.

External Build Task wizard
You can create an external build task with the External Build Task wizard.
To open the wizard, choose File|New, choose the Build page, and
double-click the External Build Task icon.

B u i l d i n g J a v a p r o g r a m s 6-17

C r e a t i n g e x t e r n a l b u i l d t a s k s

In the External Build Task wizard, you can set the following options:

• Name

Enter a name for the node that displays in the project pane.

• Show Console Output

Displays any console output in the JBuilder message pane. If this option
is off, no output is displayed.

• Program

Browse to the external program file you want to include in the build.

• Parameters

Enter any parameters and/or choose from the Macros List.

• Run Directory

Specify the directory that your external build task launches from.

• Task scheduling

Specify the build phase in which the task is executed and choose the
targets that execute before and after the external task.

Once you’ve completed the wizard, a node displays in the project pane.
You can have multiple external task nodes in a project. Each node displays
a tool tip with the executable name when you position the mouse over it.

External build tasks can be added to the Project menu. See “Configuring
the Project menu” on page 6-18. They can also be specified as the build
target to execute before running a project. See “Build Targets” on
page 7-10.

Building external tasks

To build only the external task node, right-click it in the project pane and
choose Make. If the Show Console Output option is selected, messages are
routed to the Build tab in the message pane. Two nodes can display
messages:

• StdErr: displays the standard error output stream.

• StdOut: displays the standard output stream.

Choose Project|Make Project to build the entire project and the external
task node.

Setting external build task properties

An external build task has a set of properties that are set initially in the
External Build Task wizard. These properties include name, executable to

6-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o n f i g u r i n g t h e P r o j e c t m e n u

be executed, task scheduling, and parameters. Task scheduling
determines the phase in which the task is executed. For example, if your
external build task is an obfuscator, you would set the task in the Package
phase. You can also specify the targets that occur before and after the task
within the specified phase.

To modify any of these properties after you’ve created the external build
task, right-click the node in the project pane and choose Properties.

Configuring the Project menu
This is a feature of
JBuilder Enterprise

For convenience, JBuilder allows you to configure the first group of the
Project menu. By default, Make and Rebuild are the targets on the Project
menu. You can add additional targets and build tasks, such as Clean,
external build tasks, and Ant targets if your project contains them.

The first two menu items on the Project menu are assigned default key
bindings. The first menu item also displays on the toolbar. Next to the
toolbar menu button is a drop-down menu that contains Rebuild, unless
you’ve removed it from the menu, and any other custom targets that
you’ve added to the Project menu.

You can change these menu defaults, as well as add custom targets, on the
Menu Items page of the Build page in Project Properties. The first two
targets listed on the Menu Items page have configurable key bindings.
You can change the key bindings for these first two targets in the Keymap
Editor found on the Browser page of the IDE Options dialog box (Tools|
IDE Options|Browser|Customize). The first target in the list displays
with the appropriate icon on the main toolbar with a drop-down list of all
other targets added to the Project menu.

B u i l d i n g J a v a p r o g r a m s 6-19

C o n f i g u r i n g t h e P r o j e c t m e n u

To add a project-level target to the Project menu,

1 Choose Project|Project Properties and click the Build tab.

2 Click the Menu Items tab.

3 Do one of the following:

• Click the Add button and choose an available target from the list.
Then Click OK to close the Add Build Target To Menu dialog box.

• Click the Add Custom button to add a custom menu choice that
executes multiple build targets. Enter a menu name in the Menu
Label field, click the Add button, and select the desired targets. The
targets are executed in the order listed. Use the Move Up or Move
Down buttons to reorder the list. Click OK to close the New Custom
Target dialog box.

4 Change the order of the targets on the Menu Items page by selecting a
target and choosing Move Up or Move Down. This changes the order of
the targets on the Project Menu. As noted previously, the first target in
the list appears on the toolbar and the first two targets have
configurable key bindings.

5 Click OK to close Project Properties. The new targets now appear on the
Project menu and on the drop-down menu next to the target on the
toolbar.

Note To configure the Project menu for future projects, make the changes in
the Default Project Properties dialog box.

See also

• “Creating external build tasks” on page 6-16

• “Keymaps of Editor Emulations” in Introducing JBuilder

Configuring the Project menu for project groups

This is a feature of
JBuilder Enterprise

JBuilder also allows you to configure the Project menu for project groups.
You can add Clean Project Group to the Project menu, as well as targets
that contain collections of targets contained in the subprojects. By default,
Make Project Group and Rebuild Project Group are the project group
build targets on the Project menu. Any targets that are added to the
Project menu also display on the context menu.

The first two project group menu items on the Project menu are assigned
default key bindings. The first project group menu item also displays on
the toolbar. Next to the toolbar menu button is a drop-down menu that
contains Rebuild Project Group, unless you’ve removed it from the menu,
and any other custom targets that you’ve added to the Project menu for
project groups.

6-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o n f i g u r i n g t h e P r o j e c t m e n u

You can change these menu defaults, as well as add custom targets, on the
Menu Items page of the Build page in Project Group Properties. The first
two targets listed on the Menu Items page have configurable key
bindings. You can change the key bindings for these first two targets in
the Keymap Editor found on the Browser page of the IDE Options dialog
box (Tools|IDE Options|Browser|Customize). The first target in the list
displays with the appropriate icon on the main toolbar with a drop-down
list of all other targets added to the Project menu.

To add a project group target to the Project menu,

1 Choose Project|Project Group Properties to open the Project Group
Properties dialog box. You can also right-click the project group node in
the project pane and choose Properties.

2 Choose the Build tab and click the Menu Items tab.

3 Click the Add button to open the Add Menu Item dialog box.

4 Enter a menu name for the target.

5 Click the Add button, select the targets you want to add, and click OK.

6 Select a target in the list and use the Move Up or Move Down buttons
in the Add Menu Item dialog box to reorder the target in the list. The
targets are executed in the order listed.

B u i l d i n g J a v a p r o g r a m s 6-21

A u t o m a t i c s o u r c e p a c k a g e s

7 Click OK to close the Add Target dialog box.

8 Select a menu item in the list and use the Move Up or Move Down
button on the Menu Items page to change the order of the target on the
Project menu.

9 Click OK to close the Properties dialog box.

The new target now displays on the Project menu with the other project
group build targets.

Automatic source packages
This is a feature of

JBuilder SE and
Enterprise

When the automatic source packages feature is enabled, all packages in
the project’s source paths automatically appear in the project pane. When
building with this option on, any packages that contain buildable files are
automatically built and copied with any resources to the project’s output
path. For example, if a project contains Java and SQLJ files, the Java files
are compiled and SQLJ is run against any SQLJ files. By default, JBuilder
considers resources to be images, sound, and properties files. Resources
can be defined on individual files and by file extension project wide. See
“Selective resource copying” on page 6-25 for more information on

6-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A u t o m a t i c s o u r c e p a c k a g e s

resources. See “Setting the output path” on page 5-8 for information on
output paths for a project.

The automatic source packages feature is on by default and is located on
the General page of the Project Properties dialog box. To change the
settings, choose Project|Project Properties and choose the General page.
Then, check or uncheck the Enable Source Package Discovery And
Compilation option. You can also control the level of packages displayed
in the project pane by changing the value in the Deepest Package Exposed
field. For more information on this feature, press the Help button on the
General page (Project|Project Properties).

To minimize the number of package nodes listed, JBuilder automatically
displays a subset of the packages in your project. Even though some
source packages may not be listed at the top level of your project, JBuilder
still builds them.

Important After adding new source files to the project, select the refresh button on
the project toolbar to update the automatic source packages list.

A <Project Source> node also displays at the top of the project pane when
the automatic source packages feature is enabled. This node contains all the
source packages and source files in the project, except packages and files
that you’ve added manually. You can use this node to quickly filter source
packages. See “Filtering packages” on page 6-23 for more on filtering.

Note If you have file types in your project that JBuilder doesn’t recognize, you
can add them as generic resource files. For more information, see “Adding
unrecognized file types as generic resource files” on page 6-27.

B u i l d i n g J a v a p r o g r a m s 6-23

F i l t e r i n g p a c k a g e s

For more information on Java packages, see “Chapter 7: Packages” in the
Java Language Specification at http://java.sun.com/docs/books/jls/
second_edition/html/packages.doc.html#60384.

See also

• “How JBuilder constructs paths” on page 4-9

• General page of Project Properties dialog box

Filtering packages
This is a feature of

JBuilder SE and
Enterprise

JBuilder provides a filtering feature that allows you to exclude packages
from the build process. However, if JBuilder’s dependency checker
determines that there is a dependency on classes in the excluded
packages, those classes are compiled. When you exclude packages from a
project, a Package Filters folder displays in the project pane. This folder
contains an overview of any filtering applied to the packages in the
project. Icons in this folder indicate the filtering applied. See Table 6.3,
“Package filtering icons,” on page 6-25 for definitions.

Important The automatic source packages feature, which is on by default, must be
enabled on the General page of Project Properties. If you have deeply
nested packages and are excluding only a few packages, it’s
recommended that you increase the number in the Deepest Package
Exposed field so more packages are displayed in the project pane. For
more information on automatic source packages, see “Automatic source
packages” on page 6-21.

A <Project Source> node also displays at the top of the project pane when
the automatic source packages feature is enabled. This node contains all
the source packages and source files in the project, except packages and
files that you’ve added manually. You can use this node to quickly filter
source packages. Once this node is excluded, it displays in the Package
Filters folder and not at the top of the project pane.

Manually added packages and files can’t be excluded with the Apply
Filter command. You must remove them from the project to exclude them
from the build process. Also, any buildable nodes that are children of the
project node, such as Java source files added by wizards, are compiled and
can’t be excluded unless you remove them from the project. Essentially,
any files or packages that display above the Package Filters folder are not
filtered and are included in the build process.

6-24 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

F i l t e r i n g p a c k a g e s

Excluding packages

To exclude packages from the build process,

1 Select the package(s) in the project pane that you want to exclude.

2 Right-click and choose Apply Filter or choose Project|Apply Filter.

3 Choose one of these menu commands from the submenu:

• Exclude Package And Subpackages: excludes selected package(s)
and their subpackages.

• Exclude Package: excludes selected package(s) but not their
subpackages.

Note If the package and subpackages are excluded, the package isn’t displayed
at the top of the project pane. It’s only displayed in the Package Filters
folder. If a package is excluded, but a subpackage is included; it’s
displayed with the appropriate icon at the top of the project pane and in
the Package Filters folder.

If you want to exclude all the source packages in the project,

1 Right-click the <Project Source> node in the project pane and choose
Apply Filter.

2 Choose Exclude Package And Subpackages from the submenu.

In some cases, filtering may be a two-step process. For example, if you
want to exclude all the packages except for a few subpackages, you would
do the following:

1 Select the <Project Source> node in the project pane and choose
Project|Apply Filter.

2 Choose Exclude Package And Subpackages from the submenu.

3 Open the Package Filters folder.

4 Drill down and select the subpackage(s) you want to include.

5 Right-click and choose Apply Filter|Include Package.

Filter settings are saved locally in the project file. Any new filter settings
that are applied to a package override the previous filter settings for that
package.

B u i l d i n g J a v a p r o g r a m s 6-25

S e l e c t i v e r e s o u r c e c o p y i n g

Including packages

Once you’ve excluded packages, there are several ways to include them in
the build process again.

• Choose Project|Remove All Filters.

• Right-click the Package Filters folder and choose Remove All Filters.

• Expand the Package Filters folder. Right-click a package or packages,
and choose Apply Filter. Then choose one of these menu commands
from the submenu:

• Include Package And Subpackages: includes selected package(s) and
their subpackages.

• Include Package: includes selected package(s) but not their
subpackages.

Selective resource copying
This is a feature of

JBuilder SE and
Enterprise

JBuilder copies all known resource types from the project’s source paths to
the output path during the compile process. By default, JBuilder
recognizes all images, sound, and properties files as resources and copies
them to the output path. You can override these default resource
definitions on individual files or by file extension project wide. See
“Setting the output path” on page 5-8 for more information on the output
path.

Individual resource properties

To change the default for individual files in a project, select and right-click
the file(s) in the project pane, choose Properties, and choose the Resource
tab on the Build page.

Table 6.3 Package filtering icons

Icon Menu command Description

Exclude Package And
Subpackages

Excludes any selected packages and all their
subpackages from the build process.

Include Package And
Subpackages

Includes any selected packages and all their
subpackages in the build process.

Exclude Package Excludes only the selected packages from the build
process but doesn’t exclude their subpackages.

Include Package Includes only the selected packages in the build
process but doesn’t include their subpackages.

6-26 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e l e c t i v e r e s o u r c e c o p y i n g

Figure 6.1 Properties Resource page

File-specific options
The top three radio buttons are file-specific options which control the
currently selected file(s). These options are:

• Copy: copies selected file(s) to the output path.

• Do Not Copy: does not copy the selected file(s) to the output path.

• Use File Extension Defaults: uses the project-wide defaults as displayed
in the Project-wide Defaults By Extension list.

The Copy and Do Not Copy options select an absolute behavior: always
copy to the output path or never copy to the output path when the project
is built, regardless of whether or not the file type is normally considered a
resource.

The third option, Use File Extension Defaults, allows JBuilder to deploy
the file based on its file extension in the file list below. This is the default
behavior for all newly created files and files in existing projects. The
correct extensions for the selected files are automatically selected in the
list to highlight the default behavior.

Important If the selected files or extensions do not all share the same setting, none of
the radio buttons in the corresponding group are selected. Selecting one of
the radio buttons changes everything to the same value, while leaving
none selected allows the differing values to be left alone.

B u i l d i n g J a v a p r o g r a m s 6-27

S e l e c t i v e r e s o u r c e c o p y i n g

If you change the defaults for individual files and you want to return them
to the project-wide defaults, select the files again and choose Use File
Extension Defaults.

Project-wide options
Below the three file-specific options is a list of project-wide defaults by
extension and their default deployment behavior. These defaults can be
changed on a project-by-project basis. Select one or more extensions and
use the radio buttons on the right to change the default behavior for these
extensions in the current project. The project-specific options include:

• Copy: copies selected file(s) to the output path.

• Do Not Copy: does not copy the selected file(s) to the output path.

Use the Reset button to return all files in the file extension list to the state
they were in when the dialog box was initially displayed. Remember, this
does not change your individual file settings to the default.

You can also change these defaults for all future projects in the Default
Project Properties dialog box (Project|Default Project Properties).

Adding unrecognized file types as generic resource files
If you have file types that aren’t recognized by JBuilder, you can associate
them with the generic resource file type. Then JBuilder will recognize
them and include them in the automatic source discovery process. You’ll
also be able to bundle them into archives. For example, JBuilder doesn’t
recognize Flash files, but you might want to access them in your project
and deploy them to an archive with the rest of your project. To bundle an
unrecognized file type in an archive is a two-step process. First, you need
to add it as a recognized file type. Then you need to set it to copy to the
output path when the archive is built.

1 To add unrecognized file types to the list of recognized file types for
JBuilder, complete these steps:

a Choose Tools|IDE Options and choose the File Types tab.

b Choose Generic Resource File in the Recognized File Types list.

c Click the Add button, enter the new file extension, and click OK.

d Click OK to close the IDE Options dialog box.

Important By default, any file type added as a Generic Resource File is not
included in archives. You need to set the new file type to copy to the
output path on the Resource tab of the Build page in Project
Properties. Continue on to the next step to do this.

6-28 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e l e c t i v e r e s o u r c e c o p y i n g

2 To bundle the new file type with your archive, complete these steps:

a Choose Project|Project Properties and click the Build tab. To bundle
the new file type for all future projects, choose Project|Default
Project Properties.

b Choose the Resource tab and select the new file type in the
Recognized File Types list. Notice that by default it’s set to Do Not
Copy.

c Choose the Copy radio button to set this file type to copy to the
output path.

d Click OK to close the Project Properties dialog box.

Project Properties Resource page

This is a feature of
JBuilder SE and

Enterprise

The Project Properties dialog box has a corresponding Resource tab on the
Build page that provides control over the default behaviors for file
extensions for the entire project rather than on an individual file basis. Use
the Reset button to return all files in the file extension list to the state they
were in when the dialog box was displayed.

R u n n i n g J a v a p r o g r a m s 7-1

C h a p t e r

7
Chapter7Running Java programs

When you’re ready to test your program, you can simply run it, or you
can run it and debug it at the same time. When you run your program,
JBuilder uses the class path to locate all classes your program uses. To
understand how JBuilder locates files to run the program, see “How
JBuilder constructs paths” on page 4-9 and “Where are my files?” on
page 4-12.

There are several ways to run your files. You can run an individual file,
such as an applet HTML file or an application file, by right-clicking the file
in the project pane and choosing the Run command. You can also run a
project by selecting the Run Project button on the main toolbar.

The Run Project button can be configured with preset runtime parameters
and saved as drop-down menu selections. See “Setting runtime
configurations” on page 7-6. You must have at least one runtime
configuration created to be able to run a project using F9 or the Run
toolbar button. When you have multiple configurations, you can choose
one of them as the default to use at runtime.

Running program files
To run a program file within a project,

1 Save the .java file.

2 Choose the .java file containing the main() method and do one of the
following:

• Right-click the file in the project pane and select Run. If you have
more than one runtime configuration, you’ll need to also select the
one you want to use from the sub-menu.

7-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

R u n n i n g w e b f i l e s

• Double-click the file in the project pane to open it, or if opened
already, select it to make it the active file. Right-click the file’s Name
tab in the content pane, and choose Run.

• Click the arrow beside the Run icon on the toolbar and choose a
configuration from the drop-down list.

• Select Run|Run Project (F9) on the main menu. This runs the main
class specified in the default configuration on the Run page of the
Project Properties dialog box. See “Running projects” on page 7-3. If
no default is selected, and you have just one configuration, it runs
the main class specified in that configuration.

In JBuilder SE or Enterprise,

• If the project has more than one runtime configuration, but no default
configuration is set, you are prompted to select a configuration before
the run operation continues.

• If no configurations exist for the project, the Run page of the Project
Properties dialog box will appear so you can create a runtime
configuration when you click the Run button or press F9. You can run
without runtime configurations by right-clicking the runnable file in
the Project pane and choosing Run Using Defaults.

Note If there is no runtime configuration, after you create one, you must rerun
the application.

The program compiles and runs if there are no errors. The build progress
is displayed in the status bar and the message pane displays any compiler
errors. Before compiling, error messages are displayed in the Errors folder
of the structure pane. If the program compiles successfully, the Java
command line is displayed in the message pane and the program runs.

Running web files
Applets are a feature of

all JBuilder editions.

This is a feature of
JBuilder SE and

Enterprise.

JBuilder also supports running web files, such as JSPs, servlets, SHTML,
and HTML, through a web server for a live view of your web application.
To run an applet, right-click the HTML file containing the <applet> tag and
choose Run. To run JSP, SHTML, and HTML files, right-click the file in the
project pane and select Web Run.

For servlets, you must first set the Enable Web Run/Debug/Optimize
From Context Menu option. If you create your servlets with JBuilder’s
Servlet wizard, this option is set automatically. To enable this option,
right-click the servlet file in the project pane and select Properties. Check
the Enable Web Run/Debug/Optimize From Context Menu option on the
Web Run page. Then right-click the servlet file and select Web Run.

R u n n i n g J a v a p r o g r a m s 7-3

R u n n i n g p r o j e c t s

See also

• “Working with applets” in the Web Application Developer’s Guide

• “Working with web applications in JBuilder” in the Web Application
Developer’s Guide

• “Creating servlets in JBuilder” in the Web Application Developer’s Guide

• “JavaServer Pages (JSP)” in the Web Application Developer’s Guide

Running projects
You can run your project by selecting Run|Run Project, pressing the F9
shortcut key, or by clicking the Run Project button on the main toolbar.
This runs the main class selected in the default runtime configuration. If
you have no default runtime configuration set, and have just one
configuration, it uses that configuration by default. If you have multiple
configurations with no default selected, JBuilder prompts you to choose a
runtime configuration.

Runtime configurations are set on the Run page of the Project Properties
dialog box, by choosing Run|Configurations from the main menu, or by
selecting Configurations from the drop-down menu on the toolbar Run
icon. You can also create a runtime configuration as the last step of some
wizards, such as the Application, Applet, Servlet, and Test Case wizards.

If a main class has not yet been selected, the dialog box appears for you to
make the selection. If you created your file with the Application wizard,
the main class is automatically selected.

With JBuilder SE and Enterprise, you can also set run and debug
configurations for the Run Project and Debug Project buttons. These
configurations are added to the drop-down menus that are accessible
from the Down arrows to the right of each buttons, and from the Run
menu items.

See also

• “Setting runtime configurations” on page 7-6

• “Running tests” on page 13-13

Using the Run command

When you choose the Run command (Run|Run Project), or click the Run
Project button on the main toolbar, JBuilder runs the program according to
the runtime configuration settings in the default or selected runtime
configuration. Many of JBuilder’s wizards can create a runtime

7-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

R u n n i n g p r o j e c t s

configuration and set the main class for you automatically if you choose to
do so. The Run command and the Run Project button also execute whatever
Build Target is specified in the runtime configuration being used.

To run your project without debugging,

1 Save your files.

2 Make sure a main class is selected in the runtime configuration you’re
going to use. You can add or edit runtime configurations from the Run
page of the Project Properties dialog box if none are already set.

3 Choose Run|Run Project, press F9, or click the Run button on the
toolbar.

Tip Alternatively, you can right-click the project in the project pane and choose
Clean, Make, or Rebuild first, then click the Run button on the toolbar.

JBuilder executes the Build Target you chose and runs your program. Any
errors during compile are displayed in the message pane at the bottom of
the AppBrowser. If there are errors, compiling stops so you can fix the
errors and try again. Select an error in the message pane or in the Errors
folder in the structure pane to highlight the code in the source pane. For
help on an error message, select the error in the message pane and press F1.

Figure 7.1 Error messages in the AppBrowser

See also

• Chapter 6, “Building Java programs”

• Chapter 5, “Compiling Java programs”

R u n n i n g J a v a p r o g r a m s 7-5

R u n n i n g p r o j e c t s

Running grouped projects

To run projects that are in a project group (JBuilder Enterprise only),
right-click the project in the project pane and choose Run. The Run button
on the toolbar only runs the active project, not the project group. The Run
Configuration drop-down list on the toolbar displays the run
configurations for the active project, and any additional runtime
configurations you have specified be available to the project group.

You can specify which project group runtime configurations will be added
to the Run Configuration drop-down list drop-down list when you create
or edit each runtime configurations for the projects in the group.

To surface the runtime configurations for the project,

1 Open the project group.

2 Right-click a project in the group and choose Properties.

3 Click the Run tab in the Project Properties dialog box, then select the
desired runtime configuration. (See “Setting runtime configurations”
on page 7-6 for information on creating and editing runtime
configurations.)

4 Make sure the Group box is checked for that configuration.(Group is
check by default.)

5 Repeat this for any other configurations in this project, or other projects
in the group you want available on the Run Configurations drop-down
list, then click OK.

Now, when you click the down arrow beside the Run icon on the toolbar,
in addition to the runtime configurations for the current project, you will
see all the exposed runtime configurations from the other projects in the
group.

For more information on creating and using project groups, see
“Chapter 3, “Working with project groups.”

Running OpenTools

JBuilder has an OpenTool runtime configuration type in JBuilder
Enterprise that lets you run, debug, and optimize your OpenTool project
in JBuilder just like other projects. You no longer have to exit JBuilder,

7-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g r u n t i m e c o n f i g u r a t i o n s

create a JAR file and copy it to the <JBuilder home>\lib\ext or <JBuilder
home>\patch directory, then restart JBuilder.

When you run an OpenTool project using the OpenTool runner, a
temporary config file is generated in the <outpath>\..\config-temp
directory, and a new instance of JBuilder is started using this temporary
config file. This configuration file will be removed when the tracker is
closed.

To use this OpenTool runner, you must create a new configuration for
your OpenTool project that is of the OpenTool type by doing the
following:

1 Open your OpenTool project in JBuilder.

2 Choose Run|Configurations, or click the down arrow on the Run
button and choose Configurations to open the Run page of the Project
Properties dialog box.

3 Click New to open the Runtime Properties dialog box.

4 Type a name for the configuration, and choose a Build Target.

5 Specify the location of the files to use at runtime: the ones in your
OpenTool project directory, or those in a JAR file.

6 Specify any parameters you want passed to VM or JBuilder at runtime,
as well as the location of your <JBuilder Home> path.

7 Check Override Existing Classes and Resources if you want the
OpenTool classes and resources to be first on the classpath.

8 Click OK to return to the Run page of the Project Properties dialog box.

9 Check any of the boxes that apply for this configuration (Default,
Context Menu, or Group), and use the Move Up or Move Down
buttons to move it to the preferred location in the list. This is the same
order the configurations will be listed wherever the runtime
configurations are listed in the JBuilder menus and drop-down lists.

10 Click Ok when you’re finished.

For additional help when setting these runtime configurations, click the
Help button at the bottom of the Runtime Properties dialog box.

Setting runtime configurations
JBuilder Personal can

have one runtime
configuration only.

Runtime configurations (Run|Configurations) are preset runtime
parameters. Using preset parameters saves you time when running and
debugging, because you only have to set the parameters once. With preset
configurations, each time you run or debug you simply select the desired
configuration.

R u n n i n g J a v a p r o g r a m s 7-7

S e t t i n g r u n t i m e c o n f i g u r a t i o n s

You manage runtime configurations on the Run Page of the Project
Properties dialog box. From there, you can add, edit, copy, or delete
configurations, and control the order the configurations display in the
selection menus. You can also designate one of the configurations as the
default configuration to use when you choose run or debug without
selecting a configuration, and you can specify which configurations will
appear on the context-menus for a particular project, or for a project
group.

To set runtime configurations, open the Run page of the Project Properties
dialog box one of the following ways:

• Choose Project|Project Properties, and click the Run tab.

• Choose Run|Configurations.

• Click the down arrow beside the Run or Debug buttons and choose
Configurations from the drop-down menu.

• Right-click the project file in the project pane and choose Properties,
then click the Run tab.

Some of the JBuilder wizards, such as the Application, Applet, Servlet, or
Test Case wizard, give you the option of creating a runtime configuration.

• If you have only one runtime configuration, JBuilder uses that
configuration when you choose Run|Run Project,(F9), or Run|Debug
Project (Shift-F9).

• If you specify a default configuration, JBuilder displays that
configuration in bold (or italics, depending on your look and feel) in the
Run and Debug toolbar button drop-down lists, and uses that
configuration when you run or debug your project.

• If you do not specify a default configuration, when you choose Run or
Debug you are prompted to select which configuration to use.

• If you have no existing configurations for the type of file being run,
when you choose Run from the menu, press F9, or click the Run button
on the toolbar, the Project Properties Run page displays so you can
create a configuration at that time. However, if you right-click the
runnable file in the project pane and choose Run, Builder will
automatically run it based defaults it assumes that are appropriate for
that type of file.

7-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g r u n t i m e c o n f i g u r a t i o n s

Creating a runtime configuration

To create a runtime configuration,

1 Choose Run|Configurations, or choose Project|Project Properties and
click the Run tab.

2 Click New to open the Runtime Properties dialog box.

R u n n i n g J a v a p r o g r a m s 7-9

S e t t i n g r u n t i m e c o n f i g u r a t i o n s

3 Type in a name for the configuration if you want something other than
the default. This name will be added to the Run Project and Debug
Project configuration drop-down lists and context menus.

4 Select a Build Target for this configuration from the drop-down list of
build options.

5 Select the appropriate runtime configuration type for your project, such
as Application, Applet, Server, Test, OpenTool, or MIDlet if you have
MobileSet installed. (The types of runtime configurations are mutually
exclusive from each other.) Specify the main class to run, if applicable,
and enter any desired VM and Application Parameters. For more
information on the available options for a specific runner type, select
that type, then click the Help button at the bottom of the dialog box.

For a description of the configuration types, see “Runtime
configuration types” on page 7-12.

6 Click the Debug tab and choose any desired debug options.

7 Click the Optimize tab if you have Optimizeit installed and set those
options.

8 Click OK to return to the Run page of the Project Properties dialog box
and make any changes to the checkboxes on this page.

• Check the Default box for the runtime configuration to use when
you click the Run or Debug button, or press (F9) or (Shift-F9).

• Check the Context Menu box for each configuration you want
displayed on the project’s context menu.

• Check the Group button if this project belongs to a group, and you
want the configuration available on the configuration list for the
project group.

9 Add any additional configurations you would like. When you have all
the configurations set up, put them in the desired order using the Move
Up and Move Down buttons. The way they display in this list is the
way they appear on the Run/Debug drop-down menus.

10 Check which configuration you want as the default configuration in the
Default column. If you have multiple configurations and do not select
one as the default, JBuilder will prompt you to select one when you run
the application.

11 Place a check mark in the Context Menu column beside each
configuration you want to appear on the configuration context menus.

7-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g r u n t i m e c o n f i g u r a t i o n s

To choose a configuration at runtime, click the Down arrow next to the
Run or Debug icons on the main toolbar.

If you get errors, runtime exceptions, or other program misbehavior, you
may want to debug your program as you run it to find the problems. You
do that by running the program in JBuilder’s integrated debugger.

See also

• Chapter 8, “Debugging Java programs”

Editing a runtime configuration
You can modify everything about an existing runtime configuration
except the type. If you want a different type of configuration, you must
create a new one.

To edit an existing runtime configuration,

1 Choose Run|Configurations, or click the down-arrow next to the Run
button on the toolbar and choose Configurations.

2 Select an existing runtime configuration on the Run page and click Edit,
or double-click the configuration name to open the Runtime
Configurations Properties dialog box.

3 Make the desired changes to the configuration in the Runtime
Configurations Properties dialog box, then click OK to exit it.

4 Make any additional changes on the Run page to the runtime
configurations, such as moving them in the list to change the order they
appear on the drop-down list, or changing which configuration is the
default configuration. (Click the Help button at the bottom of the Rum
page for more details on these options.)

5 Click OK when you are finished.

Build Targets
For each runtime configuration you create, you can specify which Build
Target to execute prior to running in the Runtime Properties dialog box.
JBuilder provides a set of standard targets from which to choose, and
additional ones are added to the list depending on your project. Below are
the items typically found on the Build Target list:

• <None>
Runs without compiling first.

R u n n i n g J a v a p r o g r a m s 7-11

S e t t i n g r u n t i m e c o n f i g u r a t i o n s

• Make

Make establishes dependencies among the stand-alone phases in this
order: Pre-Compile, Compile, Post-Compile, Package, and Deploy.

• Rebuild

Rebuild has Clean and Make as dependencies.

• Clean

Clean removes all build output of the other targets, such as the classes
directory, JARs, WARs, and so on. What Clean removes is dependent
upon the node selected.

• External Build Task (JBuilder Enterprise only)

If you have created an external build task, it will display in the list of
available targets from which you can choose for the runtime
configuration. For information, see “Creating external build tasks” on
page 6-16.

• Ant file targets (JBuilder Enterprise only)

If you have any Ant build files in your project, the targets inside the
Ant file are added to the list of available targets in the Runtime
Configurations dialog box.

7-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g r u n t i m e c o n f i g u r a t i o n s

Also, if you have extended your build system through OpenTools, any of
those build task targets will appear in the list.

See also

• Chapter 6, “Building Java programs”

• Chapter 5, “Compiling Java programs”

Runtime configuration types

The available runtime configuration types vary by JBuilder edition. Each
type presents a different set of runtime properties in this dialog box.

• Application

Select the Application type for an application and click the ellipsis
button. Browse to the class file containing the main() method. The main
class must be in the current project.

• Applet

Select the Applet type for an applet project and do one of the following:

• Select Main Class and click the ellipsis button to browse to the class
containing the init() method. This option runs the applet in
JBuilder’s applet viewer, AppletTestbed.

• Select HTML File and click the ellipsis button to browse to the applet
HTML file containing the <applet> tag. The HTML option runs the
applet in Sun’s appletviewer.

• Server

Select the Server type and set the parameters for the server being used.
See “Working with web applications in JBuilder” in the Web Application
Developer’s Guide. Click the Help button for more information on setting
the server runtime parameters.

• Test

Select the Test type if you have a runtime configuration for the Test
Case, or Test Suite. Choose the main class for the test suite class, any
VM parameters, and the desired test runner to use. Click the Help
button for more information on setting the test runtime parameters.

• OpenTool

Select the OpenTool type to set up a runtime configuration for running,
debugging, and optimizing an OpenTool project directly from within
JBuilder.

The OpenTool runtime configuration type lets you run, debug, and
optimize your OpenTool project in JBuilder just like other projects. You

R u n n i n g J a v a p r o g r a m s 7-13

R u n n i n g p r o g r a m s f r o m t h e c o m m a n d l i n e

no longer have to exit JBuilder, create a JAR file and copy it to the
<JBuilder home>\lib\ext or <JBuilder home>\patch directory, then
restart JBuilder.

When you run an OpenTool project using the OpenTool runner, a
temporary config file is generated in the <outpath>\..\config-temp
directory, and a new instance of JBuilder is started using this temporary
config file. This configuration file will be removed when the tracker is
closed.

• MIDlet

Select the MIDlet type (if you have MobileSet installed) to set up a
runtime configuration for running and debugging a J2ME MIDlet in
JBuilder.

Running programs from the command line
Running your program outside JBuilder requires that you put all the
libraries required by your program on your CLASSPATH or add them to the
-classpath argument to the java command. For example,

java -classpath /<jbuilder>/lib/dbswing.jar
/<home>/jbproject/mypackage/classes/mypackage.application1

In this example,

• <jbuilder> = the name of the JBuilder directory

• <home> = your user home directory, for example, c:\winnt\profiles\
<username> directory

Running a deployed program from the command line
After deploying the program using the Archive Builder or the jar tool, you
can run the JAR file from the command line.

1 Open the command-line window.

Tip For Windows, use backslashes (\) in all commands discussed here.

2 Enter the command in the following form on one line at the prompt
from any location:

java -classpath classpath package-name.main-class-name

Note The <jdk>/bin/ directory must be on your path. <jdk> represents the
name of the JDK home directory.

For example, the command could look something like this:

java -classpath /<home>/jbproject/hello/classes/HelloWorld.jar
hello.HelloWorldClass

7-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

R u n n i n g a d e p l o y e d p r o g r a m f r o m t h e c o m m a n d l i n e

In this example, <home> represents your home directory, such as c:\
winnt\profiles\<username>.

You can also use the -jar option:

java -jar HelloWorld.jar

Note You must first change to the directory that contains the .jar file before
running this command with the -jar option.

See also

• Chapter 6, “Building Java programs”

• Chapter 5, “Compiling Java programs”

• Chapter 15, “Deploying Java programs”

• The JAR tutorial at http://java.sun.com/docs/books/tutorial/jar/
index.html

• Appendix B, “Using the command-line tools”

D e b u g g i n g J a v a p r o g r a m s 8-1

C h a p t e r

8
Chapter8Debugging Java programs

Debugging is the process of locating and fixing errors in your program.
JBuilder’s integrated debugger lets you debug within the JBuilder
environment. Many debugger features are accessed through the Run
menu. You can also use context menus, both in the editor and in the
debugger, to access debugger features.

When the debugger pauses your program, you can look at the current
values of the program data items. Modifying data values during a
debugging session provides a way to test hypothetical bug fixes during a
program run. If you find that a modification fixes a program error, you
can exit the debugging session, fix your program code accordingly, and
recompile to make the fix take effect. If you are debugging with JDK 1.4 or
higher, you do not need to exit the debugging session to have the fix take
effect. See “Modifying code while debugging” on page 8-64 for more
information.

For a tutorial on debugging, see Chapter 17, “Tutorial: Compiling,
running, and debugging.” If you have JBuilder Personal, see Building
Applications with JBuilder in online help for a version of the tutorial that is
specifically designed for JBuilder Personal features.

Additional information and tips are available for these specific debugging
topics:

• If your program uses a JDataStore component, see the
“Troubleshooting” chapter of the JDataStore Developer’s Guide. (JBuilder
Enterprise)

• If you are debugging a distributed application, see Chapter 9, “Remote
debugging.” (JBuilder Enterprise)

• If you are debugging a unit test, see Chapter 13, “Unit testing.”
(JBuilder Enterprise)

8-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T y p e s o f e r r o r s

To debug outside JBuilder, use the jdb tool in the <jdk>/bin/ directory. See
the JDK documentation at http://java.sun.com/j2se/1.4/docs/tooldocs/
tools.html for more information on this tool.

Types of errors
The debugger can help find runtime errors and logic errors. If you find or
suspect a program runtime or logic error, you can begin a debugging
session by running your program under the control of the debugger.

Runtime errors

If your program contains valid statements, but the statements cause errors
when they’re executed, you’ve encountered a runtime error. For example,
your program might be trying to open a nonexistent file, or it might be
trying to divide a number by zero.

Without a debugger, runtime errors can be difficult to locate, because the
compiler doesn’t tell you anything about them. Often, the only clues you
have to work with are the results of the run, such as the screen
appearance, and the error message generated by the runtime error.

Although you can find runtime errors by searching through your program
source code, the debugger can help you quickly track down these types of
errors. Using the debugger, you can run to a specific program location.
From there, you can begin executing your program one statement at a
time, watching the behavior of your program with each step. When you
execute the statement that causes your program to fail, you have
pinpointed the error. From there, you can fix the source code and resume
testing your program.

If your program throws a runtime exception, it will print a stack trace in
the Console output, input, and errors view. You can click the underlined
file name and line number in the stack trace to go to the line of code in the
source file listed in the trace. (This is a feature of JBuilder SE and
Enterprise.)

Logic errors

Logic errors are errors in design and implementation of your program.
Your program statements are valid (they do something), but the actions
they perform are not the actions you had in mind when you wrote the
code. For example, logic errors can occur when variables contain incorrect

D e b u g g i n g J a v a p r o g r a m s 8-3

O v e r v i e w o f t h e d e b u g g i n g p r o c e s s

values, when graphic images don’t look right, or when the output of your
program is incorrect.

Logic errors are often the most difficult type of errors to find because they
can show up in places you might not expect. To be sure your program
works as designed, you need to thoroughly test all of its aspects. Only by
scrutinizing each portion of the user interface and output of your program
can you be sure that its behavior corresponds to its design. As with
runtime errors, the debugger helps you locate logic errors by letting you
monitor the values of your program variables and data objects as your
program executes.

Overview of the debugging process
After program design, program development consists of cycles of
program coding and debugging. Only after you thoroughly test your
program should you distribute it. To ensure that you test all aspects of
your program, it’s best to have a thorough test and debug plan.

One good debugging method involves breaking your program down into
different sections that you can systematically debug. By closely
monitoring the statements in each program section, you can verify that
each area is performing as designed. If you find a programming error, you
can correct the problem in your source code, recompile the program, and
then resume testing.

JBuilder Enterprise allows you to debug non-Java source, including
JavaServer Pages (JSPs). You can set a breakpoint in a non-Java source file
and debug that file either locally or remotely. You can also switch between
viewing the non-Java source or the generated Java code. For more
information, see “Debugging non-Java source” on page 8-27.

Note You can debug with any JDK that supports the JPDA debugging API.
Usually, you will debug with the version of the JDK that JBuilder ships
with. (This is the default JDK selected for the project, if no other ones have
been defined and selected.)

Creating a runtime configuration

Before running or debugging, you need to create a runtime configuration.
A runtime configuration is a set of pre-configured parameters. Using
preset parameters saves you time when running and debugging, because
you only have to set the parameters once. With preset configurations, each
time you run or debug you simply select the desired configuration. You

8-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

O v e r v i e w o f t h e d e b u g g i n g p r o c e s s

set debugger options, such as Smart Step settings and remote debugging
options, through a runtime configuration.

To create and manage configurations, you use the Runtime Configuration
Properties dialog box. For more information on runtime configurations,
see “Setting runtime configurations” on page 7-6. For more information
on the debugger options, see “Setting debug configuration options” on
page 8-68. (Multiple runtime configurations are a feature of JBuilder SE
and Enterprise.)

Compiling the project with symbolic debug information

Stripping debug
information is a feature of

JBuilder SE and
Enterprise

Before you can begin a debugging session, you need to compile your
project with symbolic debug information. Symbolic debug information
enables the debugger to make connections between your program’s
source code and the Java bytecode that is generated by the compiler.

By default, JBuilder includes symbolic debug information when you
compile. To be sure that this option is set for the current project,

1 Select Project|Project Properties to open the Project Properties dialog
box.

2 Choose the Build tab, then the Java tab. The Build|Java page looks like
this (the Debug Options are displayed):

D e b u g g i n g J a v a p r o g r a m s 8-5

O v e r v i e w o f t h e d e b u g g i n g p r o c e s s

3 Select one of the following options in the Debug Options drop-down
list:

• Source, Line, And Variable Information: includes debugging
information with source name, line number, and local variable
information in the .class file when you compile, make, or rebuild a
node.

• Source And Line Information Only: includes debugging information
with source name and line number only in the .class file when you
compile, make, or rebuild a node.

• Source Information Only: includes debugging information with
source name only in the .class file when you compile, make, or
rebuild a node.

• None: No debugging information is included. You can still debug
with this option—the this object is still available for debugging. By
selecting this option, you can significantly reduce the class to the
smallest possible size.

Tip To set this option for all new projects, choose Project|Default Project
Properties and select one of the first three debug options on the Build
page. (Setting the default project properties does not affect existing
projects.)

Note You won’t be able to view variable information in the Java API classes
because they were compiled with source and line information only. You
can, however, trace into these classes. To learn how to trace into classes,
see “Controlling which classes to trace into” on page 8-37.

When you generate symbolic debug information, the compiler stores this
information in the associated .class file. This can make the .class file
substantially larger than compiling without debugging information. You
may want to turn this option off before deployment.

To make compiling before debugging automatic, set the Build Target at
the top of the Runtime Configuration Properties dialog box (when you set
the debugging options for your runtime configuration) to Make. This
option automatically compiles your project before running it under the
debugger’s control. If this option is set to <None>, JBuilder will not compile
your program before debugging, so that your source files and class files
can be out of sync. For more information on the build target, see “Build
Targets” on page 7-10.

8-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

O v e r v i e w o f t h e d e b u g g i n g p r o c e s s

Starting the debugger

Once you’ve created a runtime configuration and compiled your project
with debug information, you can start the debugger with one of the
following menu options. For information on runtime configurations, see
“Setting runtime configurations” on page 7-6.

To debug

• A single class file in your project, and not the entire project, choose the
source file in the project pane and right-click. Choose the Debug
command for the desired configuration.

• A web application, right-click the servlet or JSP file and choose the Web
Debug command for the desired configuration. For more information,
see “Web debugging your servlet or JSP” in the “Working with web
applications” chapter of the Web Applications Developer’s Guide. (Web
application development is a feature of JBuilder Enterprise.)

• A unit test, right-click the test in the project pane and choose Debug
Test. For more information on unit testing, see Chapter 13, “Unit
testing.” (Unit testing is a feature of JBuilder Enterprise.)

Each time you start the debugger, you are starting a debugging session.
For more information, see “Debugging sessions” on page 8-9.

Note To select a runtime configuration for a debugging session, click the
down-facing arrow to the right of the Debug Project button on the main
toolbar before you begin. If you don’t specifically select a configuration,
you use the default configuration defined on the Run page of the Project
Properties dialog box. (Multiple runtime configurations are a feature of
JBuilder SE and Enterprise.)

Table 8.1 Menu commands to start debugger

Command Shortcut Description

Run|Debug
Project

Shift + F9
or

Starts the program in the debugger using the
default or selected configuration. Execution is
suspended at a breakpoint or at the first line of
code where user input is required, which ever
comes first.

Run|Step Over F8 Suspends execution at the first line of executable
code.

Run|Step Into F7 Suspends execution at the first line of executable
code.

D e b u g g i n g J a v a p r o g r a m s 8-7

O v e r v i e w o f t h e d e b u g g i n g p r o c e s s

Starting the debugger with the -classic option
In versions of the JVM below 1.3.1, the -classic option improved the
performance of the debugger. This option does not apply to newer VMs;
for example, JDK 1.4x and JDK 1.3.1 on Solaris do not require use of the
-classic option. In these versions, the VM uses “full-speed debugging,”
allowing improved performance.

If you’re using a JVM below 1.3.1 for your project, the Always Debug With
-Classic option in the Configure JDKs dialog box (Tools|Configure JDKs)
provides improved performance. JBuilder automatically checks to see if
this option will improve your performance, then checks or unchecks this
box according to what will give you the best results. This feature is
available in all editions of JBuilder.

In performing its evaluation, JBuilder performs two checks:

1 Do you have the Classic VM?

2 If present, is the JVM a version earlier than 1.3.1?

This selection is overridden when you define VM parameters such as
native, hotspot, green, or server.

Running under the debugger’s control

When you run your program under the control of the debugger, it
behaves as it normally would—your program creates windows, accepts
user input, calculates values and displays output. The debugger pauses
your program, allowing you to use the debugger views to examine the
current state of the program. By viewing the values of variables, the
methods on the call stack, and the program output, you can ensure that
the area of code you’re examining is performing as it was designed to.

As you run your program under the debugger’s control, you can watch
the behavior of your application in the windows it creates. Position the
windows so you can see both the debugger and your application window
as you debug. To keep windows from flickering as the focus alternates
between the debugger views and those of your application, arrange the
windows so they don’t overlap.

8-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Pausing program execution

When you’re in the debugger, your program is in one of two possible
states: running or suspended.

• Your program is running when the Pause button is available on the
debugger toolbar.

• Your program is suspended when you click the Pause button. When
your program is suspended, you can examine and modify data values.
The stepping buttons on the debugger toolbar become available.
Hitting a breakpoint or stopping by stepping also pauses execution.

To resume program execution, choose the Resume Program button on the
debugger toolbar. When the debugging session is over, this button
becomes the Restart Program button and restarts the session.

While your program is suspended, you can modify code and resume
execution at any active frame. For more information, see “Modifying code
while debugging” on page 8-64.

Ending a debugging session

To end the current debugging session and release the program from
memory, choose the Reset Program button.

You can also exit the application to close the debugging session. To
remove the debugging session tab, click the X on the tab or right-click the
tab and choose Remove.

The debugger user interface
If the project or class compiles successfully, the debugger is displayed at
the bottom of the AppBrowser.

• Horizontal tabs, along the bottom of the AppBrowser, represent
debugging sessions. Each tab represents a new session.

• Vertical tabs, on the lower left of the AppBrowser, represent the
debugger views. The views are displayed for the currently selected
debugging session. Each view displays icons to indicate the state and
type of the item selected in the view.

• The debugger toolbar is displayed for the currently selected debugging
session.

D e b u g g i n g J a v a p r o g r a m s 8-9

T h e d e b u g g e r u s e r i n t e r f a c e

Figure 8.1 The debugger user interface

Debugging sessions

The debugger allows you to debug multiple processes in multiple
debugging sessions. Processes can be in the same JBuilder project, or in
different ones. This allows for debugging both a client and a server
process at the same time, in the same JBuilder instance.

Watches, breakpoints and classes with tracing disabled are stored per
individual project. All breakpoints and watches apply to all processes in a
project. Breakpoints can be selectively disabled for a runtime
configuration.

When you use commands on the Run menu other than Run Project,
Debug Project and Configurations, you are continuing in the selected
debugging session. When you use buttons on the debugger toolbar, you
are also continuing in the selected session.

To end the current debugging session and release the program from
memory, choose the Reset Program button. You can also end the session
by clicking X on the debugging session tab or by right-clicking the tab and
choosing Remove Tab. Although you will be prompted to stop the process
before the tab is removed, it’s a good idea to use Run|Reset Program first.

8-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Debugger views

The debugger views allow you to look inside your program and see what
is going on. You use debugger views to examine and change data values,
trace backward and forward through your program, examine the internal
processing of a method and the call to that method, and follow an
individual thread in your program.

Debugger views are displayed along the left side of the debugger UI. To
select a view, choose its tab on the left side of the debugger. Views (except
the Console output, input, and errors view) can also be displayed as floating
windows. Floating windows allow you to see multiple debugger views at
the same time, rather than having to switch back and forth between them.
(Floating windows are a feature of JBuilder SE and Enterprise.)

• To display a view as a floating window, right-click an empty area of the
view, and choose Floating Window.

• To close the floating window, click the Close button in the floating
window or right-click an empty area of the view and uncheck Floating
Window.

• To restore the default view order after you close a floating window,
right-click an empty area of a view and choose Restore Default View
Order.

Debugger views also have context menus. Commands on these menus
often duplicate those on the Run or View menus, and allow you to easily
control the debugger.

Additionally, each debugger view displays a variety of icons to indicate
the state of the selected item. For example, a breakpoint can be disabled,
verified, unverified, or invalid—each state is indicated visually by a small
icon in the left margin of the view.

The debugger views and icons are described below.

Table 8.2 Debugger views

Tab View Description

Console view Displays output from the program and errors in the
program. Also allows you to enter any input that the
program requires. The image displayed on the icon
changes if there is any output from the program and if
any error messages are displayed.

Threads, call
stacks, and data
view

Displays the thread groups in your program. Each thread
group expands to show its threads and contains a stack
frame trace representing the current call sequence. Each
stack frame can expand to show available data elements
that are in scope. (Static data is not displayed in this view
but is displayed in the Loaded classes and static data
view.)

D e b u g g i n g J a v a p r o g r a m s 8-11

T h e d e b u g g e r u s e r i n t e r f a c e

Tip You can float all debugger views except the Console view by
right-clicking the message pane and selecting Floating Window. (This is a
feature of JBuilder SE and Enterprise.)

Console output, input, and errors view
The Console output, input, and errors view displays output from the
program and errors in the program. It also allows you to enter any input
that the program requires. When the Console tab is not selected, the icon
changes if there is any output from the program or if any error messages
are displayed.

Runtime exceptions are displayed in this view. To open the file in which a
runtime exception occurred and position the cursor on line number of the
exception, click the underlined name of the file. (This is a feature of
JBuilder SE and Enterprise.)

In this view, error output is displayed in red font. Standard output is
displayed in black font.

Synchronization
monitors view

Shows synchronization monitors used by the threads and
their current state, which is useful in detecting
deadlocked situations. This view is only available if the
current VM supports it. The HotSpot VM does not
support this feature. The ability to detect deadlocked
threads is a feature of JBuilder Enterprise.

Data watches
view

Displays the current values of data members that you are
tracking.

Loaded classes
and static data
view

Displays the classes currently loaded by the program.
Expanding a class shows static data, if any, for that class.
If a package is displayed in the tree, the number of classes
loaded for that package is displayed.

Data and code
breakpoints view

Shows all the breakpoints set in the file and their current
state. This view is also available from Run|View
Breakpoints before the debugging session begins.

Classes with
tracing disabled
view

Displays an alphabetically ordered list of classes and
packages not to step into. This view is also available from
Run|View Classes With Tracing Disabled before the
debugging session begins.

Table 8.2 Debugger views (continued)

Tab View Description

Table 8.3 Icons in Console view

Icon Description

(Green) Output messages have been written to the view.

(Red) Error messages have been written to the view.

(Black) No output in the view, or the view is in the foreground.

8-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Classes with tracing disabled view
The Classes with tracing disabled view displays an alphabetically ordered
list of classes and packages not to step into. This information is available
before you begin debugging from the Run|View Classes With Tracing
Disabled command.

By default, when you begin a debugging session, tracing into all classes
displayed in the view is disabled. This prevents the debugger from tracing
into the libraries that are provided with JBuilder, as well as the JDK
classes, allowing you to concentrate on your code, rather than on code that
has already been debugged.

For information about controlling what classes are traced into, see
“Controlling which classes to trace into” on page 8-37.

Note In JBuilder Personal, only three classes (java.lang.Object, java.lang.String
and java.lang.ClassLoader) are added to this view. You cannot add, modify
or delete items in the list, however, you can choose to step or not step into
those classes. See “Using Smart Step” on page 8-34 for more information.

Table 8.4 Context menu in Console view

Command Description

Clear All Clears all messages in the view.

Copy All Copies the contents of the view to the clipboard.

Copy Selected Copies the selected content to the clipboard.

Word Wrap Wraps long lines in the output.

Table 8.5 Icons in the Classes with tracing disabled view

Icon Description

(Gray) Tracing is disabled for the selected class or package.

(Colored) Tracing is enabled for the selected class or package.

Table 8.6 Context menu with class/package selected in Classes with tracing disabled view

Command Description

Edit Class/Package Displays the Edit Disable Tracing Class/Package dialog
box, where you can use wildcards to edit the class or
package or open the Select Class Or Package dialog box. If
you select a package, all classes in that package won’t be
stepped into. (JBuilder SE and Enterprise)

Step Into Class/
Package

Allows the selected class or package to be traced into. If you
select a package, all classes in that package will be stepped
into.

Remove Class/
Package

Removes the selected class or package from the view. This
allows the selected class or package to be traced into.
(JBuilder SE and Enterprise)

D e b u g g i n g J a v a p r o g r a m s 8-13

T h e d e b u g g e r u s e r i n t e r f a c e

Data and code breakpoints view
The Data and code breakpoints view shows all the breakpoints set in the
file and their current state. This information is also available before you
begin debugging with the Run|View Breakpoints command.

For more information about breakpoints, see “Using breakpoints” on
page 8-40.

Table 8.7 Context menu with no selection in Classes with tracing disabled view

Command Description

Floating Window Turns the view into a floating window. This command is
available when you right-click an empty area of the view.
(JBuilder SE and Enterprise)

Restore Default View
Order

Restores the default order of the debugger views. This
command is available when you right-click an empty area
of the view. (JBuilder SE and Enterprise)

Add Class Or Package Displays the Select Class Or Package dialog box, where you
choose the class or package to add to the view. This
prevents the debugger from tracing into that class or
package. This command is available when you right-click
an empty area of the view. (JBuilder SE and Enterprise)

Remove All Removes all classes and packages from the view. All
packages and classes, including those in JBuilder and JDK
libraries, will be traced into. This command is available
when you right-click an empty area of the view. (JBuilder
SE and Enterprise)

Table 8.8 Icons in Data and code breakpoints view

Icon Description

(Red) An unverified breakpoint.

A verified breakpoint.

An invalid breakpoint.

A breakpoint that has been disabled for a configuration. (JBuilder SE
and Enterprise)

A field breakpoint. A field is a Java variable that is defined in a Java
object. (JBuilder SE and Enterprise)

Table 8.9 Context menu with breakpoint selected in Data and code breakpoints view

Command Description

Go To Breakpoint Goes to the selected breakpoint in the source code.
This is useful if several files are open in the editor and
you want to quickly locate the breakpointed line of
code. This command is available when a breakpoint is
selected.

Enable Breakpoint Enables the selected breakpoint.

8-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Disable For Configuration Disables the selected breakpoint for the selected
configuration. This command is only available if you
have configured one or more runtime configurations.
By default, every breakpoint is applied to all defined
configurations. This command is available when a
breakpoint is selected. (JBuilder SE and Enterprise)

Remove Breakpoint Removes the selected breakpoint.

Breakpoint Properties Displays the Breakpoint Properties dialog box, where
you set properties for the selected breakpoint.

Break On Read Forces the debugger to stop when the selected field
breakpoint is about to be read. A field is a Java
variable that is defined in a Java object. This
command is available when a field breakpoint is
selected. (JBuilder SE and Enterprise)

Break On Write Forces the debugger to stop when the selected field
breakpoint is about to be written to. A field is a Java
variable that is defined in a Java object. This
command is available when a field breakpoint is
selected. (JBuilder SE and Enterprise)

Table 8.10 Context menu with no selection in Data and code breakpoints view

Command Description

Floating Window Turns the view into a floating window. This
command is available when you right-click an empty
area of the view. (JBuilder SE and Enterprise)

Restore Default View Order Restores the default order of the debugger views. This
command is available when you right-click an empty
area of the view. (JBuilder SE and Enterprise)

Add Line Breakpoint Displays the Add Line Breakpoint dialog box, where
you add a line breakpoint.

Add Exception Breakpoint Displays the Add Exception Breakpoint dialog box,
where you add an exception breakpoint. (JBuilder SE
and Enterprise)

Add Class Breakpoint Displays the Add Class Breakpoint dialog box, where
you add a class breakpoint. (JBuilder SE and
Enterprise)

Add Method Breakpoint Displays the Add Method Breakpoint dialog box,
where you add a method breakpoint. (JBuilder SE and
Enterprise)

Add Cross-Process
Breakpoint

Displays the Add Cross-Breakpoint dialog box, where
you add a cross-process breakpoint. (JBuilder
Enterprise)

Disable All Disables all breakpoints.

Enable All Enables all breakpoints.

Remove All Removes all breakpoints.

Table 8.9 Context menu with breakpoint selected in Data and code breakpoints view

Command Description

D e b u g g i n g J a v a p r o g r a m s 8-15

T h e d e b u g g e r u s e r i n t e r f a c e

Threads, call stacks, and data view
The Threads, call stacks, and data view displays the current status of all
thread groups in your program. Each thread group expands to show its
threads and contains a stack frame trace representing the current method
call sequence. Each stack frame expands to show available data elements
that are in scope. Icons visually indicate the type of data element. (Static
data is not displayed in this view, but is displayed in the Loaded classes
and static data view.) Items that are dimmed are inherited.

The default display of this view is split into two panes. The left pane can
expand to show stack frames. The right pane displays the content of the
item selected on the left, showing anything from a thread group to a
variable. For example, if a thread is selected in the left pane, the right pane
will show the stack frames for that thread. Alternatively, if a stack frame is
selected in the left pane, the right pane will show the variables available in
that view. (The split pane is a feature of JBuilder SE and Enterprise.)

For more information about threads, see “Managing threads” on
page 8-30.

Table 8.11 Icons in Threads, call stacks, and data view

Icon Description

The current stepping thread.

A thread group.

(Yellow) A blocked thread.

A suspended thread.

(Gray) A dead thread.

A class.

An interface.

(Colored) An object.

(Shaded) A null object.

A stack frame.

The selected stack frame.

An array.

A primitive.

(Red) An error.

(Gray) An informational message.

8-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Table 8.12 Context menu with selection in Threads, call stacks, and data view

Command Description

Keep Thread Suspended The selected thread will not be resumed when Run|
Resume Program is selected. Allows you to watch
behavior of other threads. (JBuilder Enterprise)

Set Stepping Thread The selected thread will be stepped into when Run|
Resume Program is selected. Allows you to watch
the behavior of this thread. (JBuilder Enterprise)

Set Execution Point Sets the stack frame on which resume operations will
be performed. (JBuilder Enterprise)

Cut Removes the value of a variable and puts it in the
clipboard. This command is available when a
variable is selected. (JBuilder SE and Enterprise)

Copy Copies the value of a variable to the clipboard. This
command is available when a variable is selected.
(JBuilder SE and Enterprise)

Paste Pastes the clipboard contents into another variable.
When the Paste command is used, both the cut or
copied object variable and the pasted object variable
point to the same object. This command is available
when a variable is selected. (JBuilder SE and
Enterprise)

Create Local Variable Watch Displays the Add Watch dialog box, where you
create a watch on the selected local variable. The
watch is added to the Data watches view. This
command is available when a variable or variable
array is selected. (JBuilder SE and Enterprise)

Create Array Watch Displays the Add Watch dialog box, where you
create a watch on the selected array. The watch is
added to the Data watches view. This command is
available when an array is selected. (JBuilder SE and
Enterprise)

Create Array Component
Watch

Displays the Add Watch dialog box, where you
create a watch on the selected array component. The
watch is added to the Data watches view. This
command is available when a component in an array
is selected. (JBuilder SE and Enterprise)

Adjust Display Range Displays the Adjust Range dialog box, where you
can adjust the number of array items that are
displayed in the view. This command is available
when an array is selected. (JBuilder SE and
Enterprise)

Create ‘this’ Watch Displays the Add Watch dialog box, where you
create a watch on the selected this object. The watch
is added to the Data watches view. This command is
available when a this object is selected. (JBuilder SE
and Enterprise)

Create Class Watch Displays the Add Watch dialog box, where you
create a watch on the selected class. The watch is
added to the Data watches view. This command is
available when a class is selected. (JBuilder SE and
Enterprise)

D e b u g g i n g J a v a p r o g r a m s 8-17

T h e d e b u g g e r u s e r i n t e r f a c e

Create Object Watch Displays the Add Watch dialog box, where you
create a watch on the selected object. The watch is
added to the Data watches view. This command is
available when an object is selected. An object watch
watches the selected Java object. It expands to show
data members for the current instantiation. (JBuilder
SE and Enterprise)

Create String Watch Displays the Add Watch dialog box, where you
create a watch on the selected String. The watch is
added to the Data watches view. This command is
available when a String is selected. (JBuilder SE and
Enterprise)

Create Static Field Watch Displays the Add Watch dialog box, where you
create a watch on the selected static field. The watch
is added to the Data watches view. A static field is a
Java variable defined as static (a class variable). This
command is available when a static field is selected.
(JBuilder Enterprise)

Create Field Watch Creates a watch on the selected field and
automatically adds the watch to the Data watches
view. A field is a Java variable that is defined in a
Java object. This command is available when a field
is selected. (JBuilder SE and Enterprise)

Create Field Breakpoint Creates a breakpoint on the selected field and
automatically adds the breakpoint to the Data and
code breakpoints view. A field is a Java variable that
is defined in a Java object. To activate the breakpoint,
go to the Data and code breakpoints view and
right-click the breakpoint. Choose Break On Read to
force the debugger to stop when the field is about to
be read, or Break On Write to stop when the field is
about to be written to. This command is available
when a field is selected. (JBuilder SE and Enterprise)

Show Hex/Decimal Value Changes the display base of a numeric or character
variable. This command is available when a numeric
or character variable is selected. Selecting this
command for an array will change the base of its
elements.

Show/Hide Null Values Toggles the display of a null values in an array. This
command is useful when debugging a hash-map
object. It is available when an array of type Object is
selected. (JBuilder SE and Enterprise)

Change Value Displays the Change Value dialog box, where you
can directly edit the value of a variable. This
command is available when a variable is selected.
(JBuilder SE and Enterprise)

Table 8.12 Context menu with selection in Threads, call stacks, and data view (continued)

Command Description

8-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Data watches view
The Data watches view displays the current values of data members that
you want to track. You can expand some types of watch expressions to
show data elements that are in scope. If elements are not in scope, the
message <not in scope> will be displayed in the view. Grayed-out items
are inherited.

For more information on data watches, see “Watching expressions” on
page 8-59.

Table 8.13 Context menu with no selection in Threads, call stacks, and data view

Command Description

Floating Window Turns the view into a floating window. This
command is available when you right-click an empty
area of the view. (JBuilder SE and Enterprise)

Restore Default View Order Restores the default order of the debugger views.
This command is available when you right-click an
empty area of the view. (JBuilder SE and Enterprise)

Show Current Thread Only Displays call stacks and data for the current thread
only. This command is available when you
right-click an empty area of the view. (JBuilder SE
and Enterprise)

Split Threads And Data View Splits the display into a two-paned view. Left side
expands to show stack frames; right side shows the
content of the item selected on the left. This
command is available when you right-click an empty
area of the view. (JBuilder SE and Enterprise)

Table 8.14 Icons in Data watches view

Icon Description

(Colored) An object.

An array.

A primitive.

(Red) An error.

(Gray) An informational message.

Table 8.15 Context menu with watch selected in Data watches view

Command Description

Remove Watch Removes the selected watch.

Create Local Variable Watch Displays the Add Watch dialog box, where you
create a watch on the selected local variable. This
command is available when a variable or variable
array is selected. (JBuilder SE and Enterprise)

D e b u g g i n g J a v a p r o g r a m s 8-19

T h e d e b u g g e r u s e r i n t e r f a c e

Create Array Watch Displays the Add Watch dialog box, where you
create a watch on the selected array. This command
is available when an array is selected. (JBuilder SE
and Enterprise)

Create Array Component
Watch

Displays the Add Watch dialog box, where you
create a watch on the selected array component. This
command is available when a component of an array
is selected. (JBuilder SE and Enterprise)

Adjust Display Range Displays the Adjust Range dialog box, where you can
adjust the number of array items that are displayed
in the view. This command is available when an
array is selected. (JBuilder SE and Enterprise.)

Create ‘this’ Watch Displays the Add Watch dialog box, where you
create a watch on the selected this object. The watch
is added to the Data watches view. This command is
available when a this object is selected. (JBuilder SE
and Enterprise)

Create Class Watch Displays the Add Watch dialog box, where you
create a watch on the selected class. The watch is
added to the Data watches view. This command is
available when a class is selected. (JBuilder SE and
Enterprise)

Create Object Watch Displays the Add Watch dialog box, where you
create a watch on the selected object. The watch is
added to the Data watches view. This command is
available when an object is selected. An object watch
watches the selected Java object. It expands to show
data members for the current instantiation. (JBuilder
SE and Enterprise)

Create String Watch Displays the Add Watch dialog box, where you
create a watch on the selected String. The watch is
added to the Data watches view. This command is
available when a String is selected. (JBuilder SE and
Enterprise)

Create Static Field Watch Displays the Add Watch dialog box, where you
create a watch on the selected static field. The watch
is added to the Data watches view. A static field is a
Java variable defined as static (a class variable). This
command is available when a static field is selected.
(JBuilder Enterprise)

Create Field Watch Creates a watch on the selected field and
automatically adds the watch to the Data watches
view. A field is a Java variable that is defined in a
Java object. This command is available when a field is
selected. (JBuilder SE and Enterprise)

Table 8.15 Context menu with watch selected in Data watches view (continued)

Command Description

8-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Loaded classes and static data view
The Loaded classes and static data view displays the classes currently
loaded by the program. Expanding a class shows static data, if any, for
that class. If a package is displayed in the tree, the number of classes
loaded for that package is displayed.

Classes in this view that contain $ followed by a number represent inner
classes. Inner classes are created by the compiler for event handlers
defined as Anonymous Adapters on the Generated page of the Project
Properties dialog box.

Create Field Breakpoint Creates a breakpoint on the selected field and
automatically adds the breakpoint to the Data and
code breakpoints view. A field is a Java variable that
is defined in a Java object. To activate the breakpoint,
go to the Data and code breakpoints view and
right-click the breakpoint. Choose Break On Read to
force the debugger to stop when the field is about to
be read, or Break On Write to stop when the field is
about to be written to. This command is available
when a field is selected. (JBuilder SE and Enterprise)

Show/Hide Null Values Toggles the display of a null values in an array. This
command is useful when debugging a hash-map
object. It is available when an array of type Object is
selected. (JBuilder SE and Enterprise)

Change Value Displays the Change Value dialog box, where you
can directly edit the value of a variable. This
command is available when a primitive data type is
selected. (JBuilder SE and Enterprise)

Change Watch Displays the Change Watch dialog box where you
change the watch expression and description.

Table 8.16 Context menu with no selection in Data watches view

Command Description

Floating Window Turns the view into a floating window. This
command is available when you right-click an empty
area of the view. (JBuilder SE and Enterprise)

Restore Default View Order Restores the default order of the debugger views.
This command is available when you right-click an
empty area of the view. (JBuilder SE and Enterprise)

Add Watch Displays the Add Watch dialog box, where you can
add a watch. This command is available when you
right-click an empty area of the view.

Remove All Removes all watches. This command is available
when you right-click an empty area of the view.

Table 8.15 Context menu with watch selected in Data watches view (continued)

Command Description

D e b u g g i n g J a v a p r o g r a m s 8-21

T h e d e b u g g e r u s e r i n t e r f a c e

For more information, see “How variables are displayed in the debugger”
on page 8-56.

Table 8.17 Icons in Loaded classes and static data view

Icon Description

A package.

A class.

An interface.

A locked class.

(Colored) An object.

(Shaded) A null object.

An array.

A primitive.

Table 8.18 Context menu with selection in Loaded classes and static data view

Command Description

Cut Removes the value of a variable and puts it in the clipboard.
This command is available when a variable is selected.
(JBuilder SE and Enterprise)

Copy Copies the value of a variable to the clipboard. This
command is available when a variable is selected. (JBuilder
SE and Enterprise)

Paste Pastes the clipboard contents into another variable. When
the Paste command is used, both the cut or copied object
variable and the pasted object variable point to the same
object. This command is available when a variable is
selected. (JBuilder SE and Enterprise)

Create Local Variable
Watch

Displays the Add Watch dialog box, where you create a
watch on the selected local variable. The watch is added to
the Data watches view. This command is available when a
variable is selected. (JBuilder SE and Enterprise)

Create Array Watch Displays the Add Watch dialog box, where you create a
watch on the selected array. The watch is added to the Data
watches view. This command is available when an array is
selected. (JBuilder SE and Enterprise)

Create Array
Component Watch

Displays the Add Watch dialog box, where you create a
watch on the selected array component. The watch is added
to the Data watches view. This command is available when
a component in an array is selected. (JBuilder SE and
Enterprise)

Adjust Display Range Displays the Adjust Range dialog box, where you can adjust
the number of array items that are displayed in the view.
This command is available when an array is selected.
(JBuilder SE and Enterprise)

8-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Synchronization monitors view
This is a feature of

JBuilder SE and
Enterprise

The Synchronization monitors view shows synchronization monitors
used by the threads and their current state, useful for detecting
deadlocked situations. In JBuilder Personal, the tab will display, but the
deadlock state is not shown.

Create ‘this’ Watch Displays the Add Watch dialog box, where you create a
watch on the selected this object. The watch is added to the
Data watches view. This command is available when a this
object is selected. (JBuilder SE and Enterprise)

Create Class Watch Displays the Add Watch dialog box, where you create a
watch on the selected class. The watch is added to the Data
watches view. This command is available when a class is
selected. (JBuilder SE and Enterprise)

Create Object Watch Displays the Add Watch dialog box, where you create a
watch on the selected object. The watch is added to the Data
watches view. This command is available when an object is
selected. An object watch watches the selected Java object. It
expands to show data members for the current
instantiation. (JBuilder SE and Enterprise)

Create String Watch Displays the Add Watch dialog box, where you create a
watch on the selected String. The watch is added to the
Data watches view. This command is available when a
String is selected. (JBuilder SE and Enterprise)

Create Static Field
Watch

Displays the Add Watch dialog box, where you create a
watch on the selected static field. The watch is added to the
Data watches view. A static field is a Java variable that is
defined as static in a Java object. This command is available
when a static field is selected. (JBuilder Enterprise)

Create Field Watch Creates a watch on the selected field and automatically adds
the watch to the Data watches view. A field is a Java
variable that is defined in a Java object. This command is
available when a field is selected. (JBuilder SE and
Enterprise)

Change Value Displays the Change Value dialog box, where you can
directly edit the value of a variable. This command is
available when a variable is selected. (JBuilder SE and
Enterprise)

Table 8.19 Context menu with no selection in Loaded classes and static data view

Command Description

Floating Window Turns the view into a floating window. This command is
available when you right-click an empty area of the view.
(JBuilder SE and Enterprise)

Restore Default View
Order

Restores the default order of the debugger views. This
command is available when you right-click an empty area
of the view. (JBuilder SE and Enterprise)

Table 8.18 Context menu with selection in Loaded classes and static data view (continued)

Command Description

D e b u g g i n g J a v a p r o g r a m s 8-23

T h e d e b u g g e r u s e r i n t e r f a c e

Note Some VMs, such as HotSpot, don’t provide this information. If the
Synchronization monitors view is not available and your VM supports
classic, you need to add -classic as a VM parameter as follows:

1 Open the Project|Project Properties dialog box for the project you are
debugging.

2 Choose the Run page, select the runtime configuration, and click Edit to
edit it.

3 On the Run tab, enter -classic in the VM Parameters field.

4 Click OK two times to close the dialog boxes.

For more information about threads, see “Managing threads” on
page 8-30.

Debugger toolbar

The toolbar at the bottom of the debugger provides quick access to
frequently used debugger actions. The right side of the toolbar, the
debugger status bar, displays status messages.

Figure 8.2 Debugger toolbar

Table 8.20 Icons in Synchronization monitors view

Icon Description

(Yellow) Synchronization monitor used by specified thread is not locked.

(Red) Synchronization monitor used by specified thread is locked.

Table 8.21 Context menu in Synchronization monitors view

Command Description

Floating Window Turns the view into a floating window. This command
is available when you right-click an empty area of the
view. (JBuilder SE and Enterprise)

Restore Default View Order Restores the default order of the debugger views. This
command is available when you right-click an empty
area of the view. (JBuilder SE and Enterprise)

8-24 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

The following table explains the toolbar buttons in detail.

Table 8.22 Toolbar buttons

Button Action Description

Reset Program Ends the current application run and releases it
from memory. This is the same as Run|Reset
Program.

 / Restart/Resume
Program

Restarts the debugging that has finished or been
reset or continues the current one. This is the same
as Run|Resume Program.

Pause Program Pauses the current debugging session. This is the
same as Run|Pause Program.

Smart Step Controls whether to use the Smart Step settings in
the Classes with tracing disabled view and the
Smart Step options on the Debug page of the
Runtime Properties dialog box. (JBuilder SE and
Enterprise)

Step Over Steps over the current line of code. This is the same
as Run|Step Over.

Step Into Steps into the current line of code. This is the same
as Run|Step Into.

Step Out Steps out of the current method and returns to its
caller. This is the same as Run|Step Out.

Smart Swap Compiles modified files and updates the compiled
classes. This is the same as Run|Smart Swap.
(JBuilder Enterprise)

Set Execution
Point

Sets where program is to resume. The execution
point is moved to the new location. This is the
same as Run|Set Execution Point. (JBuilder
Enterprise)

Smart Source Sets source file type, based on the original
non-Java source language. Positions cursor in new
file display on current stack frame. This is the
same as Run|Smart Source. (JBuilder Enterprise)

Add Breakpoint Adds a breakpoint to the current debugging
session. Click the down-facing arrow to the right
of the button to choose the breakpoint type. This is
the same as Run|Add Breakpoint.

Add Watch Adds a watch to the current debugging session.
This is the same as Run|Add Watch.

Show Current
Frame

Displays the current thread’s call stack and
highlights the current execution point in the
source.

D e b u g g i n g J a v a p r o g r a m s 8-25

T h e d e b u g g e r u s e r i n t e r f a c e

Debugger shortcut keys

You can use the following shortcut keys for easy access to debugger
functions.

ExpressionInsight

This is a feature of
JBuilder SE and

Enterprise

When the debugger is suspended, you can access ExpressionInsight—a
small, pop-up window that shows, in tree form, the contents of the
selected expression. To display the ExpressionInsight window,

• Hold down the Ctrl key (the Command key on Macintosh) and move the
mouse over your code in the editor. The ExpressionInsight window
displays when the mouse passes over a meaningful expression.

• Move your mouse to the expression you want to see in more detail and
press Ctrl plus the right mouse button.

The ExpressionInsight window displays until you press a key to close it.

The ExpressionInsight window allows you to descend into members of
the expression. If the expression is an object, the context menu displays
the same menu commands as those available in the Threads, call stacks,
and data view when an object is selected. You can also right-click a
descendent in the window to display a context menu.

Table 8.23 Debugger shortcut keys

Keys Action

Shift+F9 Debug project.

Ctrl+F2 Reset program.

F4 Run to cursor.

F5 Toggle breakpoint when in editor.

F7 Step into.

F8 Step over.

F9 Resume program (continues the current debug
session).

Ctrl+left-mouse click in gutter
on breakpoint

Displays Breakpoint Properties dialog box.

Ctrl+right-mouse click in editor
on expression

Brings up ExpressionInsight window for that
expression.

8-26 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e d e b u g g e r u s e r i n t e r f a c e

Figure 8.3 ExpressionInsight window

The ExpressionInsight window is disabled when the debugging session is
ended or not suspended.

Tool tips

This is a feature of
JBuilder SE and

Enterprise

When the debugger is suspended, you can place the mouse cursor over
any variable in the editor to display its value. The value is displayed in a
small pop-up window called a tool tip. If you select text, you’ll see the
value of the selected text.

Figure 8.4 Tool tip window

Tool tips are disabled when the debugging session is ended or not
suspended.

D e b u g g i n g J a v a p r o g r a m s 8-27

D e b u g g i n g n o n - J a v a s o u r c e

Debugging non-Java source
This is a feature of
JBuilder Enterprise

You can use JBuilder to debug non-Java source code, including JSP, SQLJ
and LegacyJ code. You can debug both locally and remotely. To
accomplish this, JBuilder uses the mapping information that is saved in
the class file (see JSR-45). This allows you to debug as your normally
would—you can run and suspend your program, set and run to
breakpoints, step through code, and examine and change data values.

When your program is suspended, you can change the view of your code,
allowing you to view either the Java source code or the non-Java source
code. For example, if you’re debugging a JSP and you’re stopped on a
breakpoint, you can either view the Java source for that JSP or the JSP
itself.

To switch views, use the Smart Source button on the debugger toolbar. A
pop-up window shows the currently selected source view and the
available source views. When you select a source view that differs from
the current source view, the editor will repaint with the file associated
with the new source view. Source view state is kept per debugging
session, so changing the source view will change the file that is displayed
when the VM is suspended.

Note The default source view is the one JBuilder determines is best for the
current code.

When you switch source views, the current stack frame and the cursor
location will also switch. For example, if you’re debugging a JSP, and
viewing the JSP code, you might have set the breakpoint on line 25.
However, if you switch to the Java source, the cursor might switch to line
75. This is because the analogous stack frames are not located on the same
lines of code in the two files.

Controlling program execution
The most important characteristic of a debugger is that it lets you control
the execution of your program. For example, you can control whether
your program executes a single line of code, an entire method, or an entire
program block. By manually controlling when the program should run
and when it should pause, you can quickly move over the sections that
you know work correctly and concentrate on the sections that are causing
problems.

Running and suspending your program

When your program is running in the debugger, you need to pause it in
order to examine data values. Pausing causes the debugger to suspend

8-28 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o n t r o l l i n g p r o g r a m e x e c u t i o n

your program. You can then use the debugger to examine the state of your
program with respect to the program location.

When you are using the debugger, your program can be in one of two
possible states: running or suspended.

• Your program is running when the Pause button is available on the
debugger toolbar.

• Your program is suspended when you click the Pause icon. When your
program is suspended, you can examine data values. The stepping
buttons on the debugger toolbar become available.

To resume program execution, choose the Resume Program button on the
debugger toolbar. When the debugging session is ended, this button
becomes the Restart Program button and restarts the session.

While your program is suspended, you can modify code and resume
execution at any active stack frame. For more information, see “Modifying
code while debugging” on page 8-64.

Resetting the program

During debugging, you may need to reset the program from the
beginning. For example, you might need to reset the program if you step
past the location of a bug, or if variables or data structures become
corrupted with unwanted values.

To end the current program run, do one of the following:

• Choose Run|Reset Program.

• Click the Reset Program button on the debugger toolbar.

Resetting a program releases resources and clears all variable settings.
However, resetting a program does not delete any breakpoints or watches
that you have set, which makes it easy to resume the debugging session.

To restart the program, click the Restart Program button on the debugger
toolbar.

The execution point

When you’re in a suspended debugging session, the line of code that is the
current execution point for a thread is highlighted in the editor with an
arrow in the left margin of the editor.

The execution point marks the current line of source code to be executed
by the debugger. When you pause the program’s execution in the
debugger, the current execution point for the selected thread is
highlighted. The execution point always shows the current line of code to

D e b u g g i n g J a v a p r o g r a m s 8-29

C o n t r o l l i n g p r o g r a m e x e c u t i o n

be executed, whether you are going to step over, step into, or run your
program without stopping.

To find the current execution point, do one of the following:

• Choose Run|Show Execution Point.

• Click the Show Current Frame button on the debugger toolbar.

The editor displays the block of code in the area of the current execution
point. The execution point is marked by an arrow in the left margin of the
editor and that line of code is highlighted. Program execution resumes
from that point.

Figure 8.5 The execution point

While debugging, you’re free to open, close, and navigate through any file
in the editor. Because of this, it’s easy to lose track of the next program
statement to execute, or the location of the current program scope. To
quickly return to the execution point, choose Run|Show Execution Point
or click the Show Current Frame button on the debugger toolbar.

Setting the execution point
This is a feature of
JBuilder Enterprise

When the program is suspended, you can set the execution point for the
current stepping thread. This will change the execution point from its
current location. You may also want to set the execution point after you
use the Smart Swap button. (For more information about Smart Swap, see
“Modifying code while debugging” on page 8-64.)

8-30 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o n t r o l l i n g p r o g r a m e x e c u t i o n

To set the execution point for the current stepping thread,

1 Open the Threads, call stack and data view.

2 Select the stack frame where you want to resume operations, right-click
and choose Set Execution Point.

3 The editor displays source code in the area of the new execution point.
If this is the stepping thread, the execution point is highlighted in the
left margin of the editor with an arrow and the line of code is
highlighted. Program execution resumes from that point.

You can use the Set Execution Point button on the Debugger toolbar to set
the execution point. This button displays a pop-up window that lists the
stack frames of the stepping thread. You can choose the one you want.
Note that the current stack frame selection is dimmed. The stack frame
where program execution will resume is marked in the Threads, calls
stacks and data view with the stepping button. You can also use the Run|
Set Execution Point menu command to set a new stack frame for resume
operations.

Note Setting the execution point will not reset the value of any object variables
that have been modified in the call stacks.

Managing threads

To use the debugger to manage the threads in your program, you use both
the Threads, call stacks, and data view and the Synchronization monitors
view.

• The Threads, call stacks, and data view shows the current status of all
thread groups for the program. It also shows all method calls the
program has made, in the order they were called. This display allows
you to trace what calls were made to arrive at the current error. You can
also use this pane to return to the place where a method was called.

• The Synchronization monitors view shows all the synchronization
monitors used by all the threads in the debugged program, and their
current state.

Using the split pane
This is a feature of

JBuilder SE and
Enterprise

The default display of the Threads, call stacks, and data view is split into
two panes. The left pane can expand to show stack frames. The right pane
displays the content of the item selected on the left, showing anything
from a thread group to a variable. For example, if a thread is selected in
the left pane; the right pane shows the stack frames for that thread.
Alternatively, if a stack frame is selected in the left pane, the right pane
will show the variables available in that view.

D e b u g g i n g J a v a p r o g r a m s 8-31

C o n t r o l l i n g p r o g r a m e x e c u t i o n

Figure 8.6 Threads, call stacks, and data view split pane

Displaying only the current thread
This is a feature of

JBuilder SE and
Enterprise

To display the call stacks and data for the current thread only,

1 Display the Threads, call stacks, and data view.

2 Right-click an empty area of the view.

3 Choose Show Current Thread Only. All threads other than the current
one are removed from the view.

4 To display all threads again, right-click in an empty area of the view
and toggle Show Current Thread.

Displaying the top stack frame
To display the current thread’s top stack frame, click the Show Current
Frame button on the debugger toolbar.

Choosing the thread to step into
To choose the thread to step into,

1 In the Threads, call stacks, and data view, make sure all threads are
showing. (Right-click and make sure Show Current Thread Only is off.)

2 Select the thread you want to step into.

3 Right-click and choose Set Stepping Thread. The icon for the new
stepping thread changes to .

Keeping a thread suspended
This is a feature of
JBuilder Enterprise

After the debugger has been suspended, and you’re ready to resume
execution, you can optionally keep a thread suspended. This allows you to
watch the behavior of the just the threads you want, without interference
from the others.

To resume program execution, choose the Resume Program button on the
debugger toolbar. When the debugging session is resumed, only the
threads not kept suspended will be resumed.

Warning This can lead to a deadlocked situation.

8-32 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o n t r o l l i n g p r o g r a m e x e c u t i o n

To keep a thread suspended,

1 Start your program and pause the debugger with the Pause button.

2 In the Threads, call stacks, and data view, right-click the thread you
want to keep suspended.

3 Choose Keep Thread Suspended.

4 Click the Resume Program button.

5 The selected thread will not be resumed.

A suspended thread is indicated by the icon.

Detecting deadlock states
The ability to detect

deadlocked threads is a
feature of JBuilder

Enterprise

Use the Synchronization monitors view to detect deadlocked threads. You
can use this view to see exactly what thread is waiting for what monitor.

In this view, each monitor shows the thread that owns it and the threads,
if any, that are waiting to get it. When a monitor is in a deadlocked state,
more than one thread is trying to get it. However, it cannot be released,
because the thread that is holding it is waiting for another monitor to be
released. The (red) icon shows that a monitor is deadlocked.

When you expand each monitor in the view, you’ll see all the threads that
are waiting for it, as well as the thread that owns it. Note that the icons in
this view just show whether that thread is the currently active one. Each
thread can be expanded to show its current stack, as it can in the Threads,
call stacks, and data view.

In the example below, both threads 1 and 2 have waiting threads. Threads
4, 3, and 1 are waiting for thread 2; thread 2 is the owner—“monitor2” is
the name of the thread object. Thread 4 is the current stepping thread.

Figure 8.7 Synchronization monitors view

Moving through code

The Run|Step Into and Run|Step Over commands offer the simplest way
of moving through your program code. While the two commands are very
similar, they each offer a different way to control code execution.

Note You can also use the Step Into or Step Over buttons on the
debugger toolbar.

D e b u g g i n g J a v a p r o g r a m s 8-33

C o n t r o l l i n g p r o g r a m e x e c u t i o n

The smallest increment by which you step through a program is a single
line of code. Multiple program statements on one line of text are treated as
a single line of code; you cannot individually debug multiple statements
contained on a single line of text. The easiest approach is to put each
statement on its own line. A single statement that is spread over several
lines of text is treated as a single line of code.

As you debug, you can step into some methods and step over others. If
you’re confident that a method is working properly, you can step over
calls to that method, knowing that the method call will not cause an error.
If you aren’t sure that a method is well-behaved, step into the method and
check whether it is working properly. You should step over methods that
are in libraries provided by JBuilder or third party vendors. This will
considerably speed up your debugging cycle.

Stepping into a method call
The Run|Step Into command executes a single program statement at a
time. If Smart Step is on, classes in the Classes with tracing disabled view
that are marked as tracing disabled will not be stepped into. When Smart
Step is off, classes in the Classes with tracing disabled view are ignored, so
you’ll be able to step into all of these classes.

If the execution point is located on a call to a method, the Step Into
command steps into that method and places the execution point on the
method’s first statement. Subsequent Step Into commands will execute the
method’s code one line at a time.

If the execution point is located on the last statement of a method, Step
Into causes the debugger to return from the method, placing the execution
point on the line of code that follows the call to the method you are
returning from.

The term “single-stepping” refers to using Step Into to successively run
though the statements in your program code.

There are several ways to issue the Step Into command:

• Choose Run|Step Into.

• Press F7.

• Click the Step Into button on the debugger toolbar.

Stepping over a method call
The Run|Step Over command, like Run|Step Into, lets you execute
program statements one at a time. However, if you issue the Step Over
command when the execution point is located on a method call, the
debugger runs that method without stopping (instead of stepping into it),
then positions the execution point on the statement that follows the
method call.

8-34 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o n t r o l l i n g p r o g r a m e x e c u t i o n

There are several ways to issue the Step Over command:

• Choose Run|Step Over.

• Press F8.

• Click the Step Over button on the debugger toolbar.

Stepping out of a method
The Run|Step Out command lets you step out of a method to the calling
routine.

If Smart Step is on, classes in the Classes with tracing disabled view that
are marked as tracing disabled will not be stopped in.

There are two ways to issue the Step Out command:

• Choose Run|Step Out.

• Click the Step Out button on the debugger toolbar.

Using Smart Step
The Smart Step toggle allows you to determine if each step is “smart” or
not. To set this toggle, choose Enable Smart Step on the Debug page of the
Runtime Properties dialog box. You can also click the Smart Step button
on the debugger toolbar to enable Smart Step for the current session.

When this feature is on, each step operation steps into the classes listed in
the Classes with tracing disabled view. For JBuilder SE and Enterprise,
stepping is also controlled by the Smart Step options on the Debug page of
the Runtime Properties dialog box.

• The Classes with tracing disabled view allows you to set what classes
won’t be traced into. For JBuilder Personal, just three classes are
available in this view: java.lang.Object, java.lang.String and
java.lang.ClassLoader. You cannot add, modify, or delete items in the
view.

• For JBuilder SE and Enterprise, the Smart Step options on the Debug
page of the Runtime Properties dialog box control the stepping
behavior for the classes that are traced into. These options are:

• Skip synthetic methods

Skips synthetic methods when stepping into classes.

• Skip constructors

Skips constructors when stepping into classes.

• Skip static initializers

Skips static initializers when stepping into classes.

D e b u g g i n g J a v a p r o g r a m s 8-35

C o n t r o l l i n g p r o g r a m e x e c u t i o n

• Warn if break in class with tracing disabled (This is a feature of all
JBuilder editions.)

Displays a warning message if there is a breakpoint in a class that
has tracing disabled. For more information, see “Breakpoints and
tracing disabled settings” on page 8-40.

When Smart Step is off, classes in the Classes with tracing disabled view,
along with Smart Step options, are ignored, so you’ll be able to step into
all of these classes.

By default, when you start a debugging session, Smart Step is on.

• To turn it off for the current session, click the Smart Step button on the
debugger toolbar. To turn it off at the start of a debugging session, turn
off the Enable Smart Step option on the Debug page of the Runtime
Properties dialog box.

• The Smart Step button on the debugger toolbar dims to show that
Smart Step is off. To turn Smart Step back on again, click the button or
set the Enable Smart Step option on the Debug page of the Runtime
Properties dialog box.

Running to a breakpoint

Set breakpoints on lines of source code where you want the program
execution to pause during a run. Running to a breakpoint is similar to
running to a cursor position, in that the program runs without stopping
until it reaches a certain source code location.

You can have multiple breakpoints in your code. You can customize each
breakpoint so it pauses the program execution only when certain
conditions occur.

If you are debugging non-Java source and your program is paused on a
breakpoint, you can switch views. Press the Smart Source button on the
debugger toolbar, or choose Run|Smart Source. Choose the view of your
code that you want to see. The source is displayed in the editor, and the
cursor is placed on the current stack frame. Note that this will probably be
different line number than in the previous view. For example, if you’re
debugging a JSP, you might be on line 120 in the Java source, but on line
55 in the JSP source (the non-Java source). For more information, see
“Debugging non-Java source” on page 8-27.

For more information about breakpoints, see “Using breakpoints” on
page 8-40.

8-36 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o n t r o l l i n g p r o g r a m e x e c u t i o n

Running to the end of a method

The Run|Run To End Of Method command runs your application until it
reaches the end of the current method. This command is useful if you’ve
stepped into a method you meant to step over.

Running to the cursor location

You can run your program to a spot just before the suspected location of
the problem. At that point, check that all data values are correct. Then run
your program to another location, and check the values there.

To run to a specific program location,

1 In the editor, position the cursor on the line of code where you want to
begin (or resume) debugging.

2 Choose Run|Run To Cursor or right-click and choose Run To Cursor.

When you run to the cursor, your program executes without stopping
until the execution reaches the location marked by the cursor in the editor.
When the execution encounters the code marked by the cursor, the
debugger regains control, suspends your program, and places the
execution point on that line of code. For more information about the
execution point, see “The execution point” on page 8-28.

This command speeds up the debugging process, as it allows you to move
quickly through code that is error-free.

Viewing method calls

The Threads, call stacks, and data view shows all thread groups from your
program. For each thread, the sequence of method calls that brought your
program to its current state is displayed. Each stack frame expands to
show available data.

If your program was compiled with debugging information (the default),
this view also shows the arguments passed to a method call. Each method
is followed by a listing that details the parameters with which the call was
made. In addition, the view shows where each method resides. It lists the
line the method call is on, the class name, and the source name.

To view the source code and data state located at a particular method call,
click the method.

D e b u g g i n g J a v a p r o g r a m s 8-37

C o n t r o l l i n g p r o g r a m e x e c u t i o n

Locating a method call

You can locate the place in your source code where a method was called,
allowing you to backtrack into a debugging session.

To locate a method call, do one of the following:

• Click the method in the Threads, call stack and data pane. This takes
you to the editor, with the cursor placed on the line of code in the file
from which the method was called.

• Right-click in the editor and choose the Run To Cursor command.

Controlling which classes to trace into

To closely examine part of your program, you can tell the debugger to
only trace into the files you want to step through. This way, you can
concentrate on a known problem area, rather than manually stepping
through every line of code in the entire program. For example, you
usually don’t want to step through classes that are in the Sun library,
because you’re not going to troubleshoot them; you usually only want to
inspect and troubleshoot your own classes.

To determine what classes are and aren’t going to be traced into,

• If you’re in a debugging session, choose the Classes with tracing
disabled view. This shows all the classes not to trace into.

• If you haven’t started a debugging session, choose Run|View Classes
With Tracing Disabled. The Classes With Tracing Disabled dialog box
is displayed.

8-38 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C o n t r o l l i n g p r o g r a m e x e c u t i o n

Both the view and the dialog box operate in the same way.

Note In JBuilder Personal, three basic classes (java.lang.Object, java.lang.String
and java.lang.ClassLoader) are added to the view. You cannot add, modify
or delete items in the list; however, you can choose to step or not step into
those classes. See “Using Smart Step” on page 8-34 for more information.

You can enable or disable a class or package in the Classes with tracing
disabled view at any time. Simply right-click the class or package and
toggle the Step Into Class/Package option. When disabled (the default),
the class or package won’t be traced into. When enabled, it will be stepped
into. Note that the icon changes for the two states:

• When tracing is enabled, the icon is: (Colored)

• When disabled, the icon is: (Gray)

Note When you disable tracing for a package, you are disabling tracing for all
classes in that package.

In JBuilder SE and Enterprise, you can remove a class or package from the
list by selecting it and pressing Delete, or by selecting it, right-clicking, and
choosing Remove Class/Package. To remove all classes and packages,
right-click in an empty area of the view and choose Remove All.
Removing all classes and packages from the view automatically enables
tracing into every class that your program calls.

In JBuilder SE and Enterprise, you can add a class or a package to the list
by right-clicking in an empty area of the view and choosing Add Class Or
Package. The Select Class Or Package dialog appears, where you choose
the name of the class or package to disable tracing for.

In JBuilder SE and Enterprise, you can edit a class or a package in the list
by right-clicking a class or package in the view and choosing Edit Class/
Package. The Select Class Or Package dialog appears, where you choose
the name of the class or package to enable tracing for.

Changes take place immediately. You do not need to restart the
debugging session.

Classes in the Classes with tracing disabled view, with their enabled/
disabled state, are saved in the project file.

Once you’ve selected the classes you don’t want to trace into, use the
Smart Step button on the debugger toolbar to control the stepping. When
this feature is on, each step operation uses the classes listed in the Classes
with tracing disabled view and the Smart Step options selected on the
Debug page of the Runtime Configuration Properties dialog box:

• The Classes with tracing disabled view allows you to set which classes
won’t be traced into.

• The Smart Step options on the Debug page of the Runtime Properties
dialog box control the stepping behavior for the classes that are traced into.

D e b u g g i n g J a v a p r o g r a m s 8-39

C o n t r o l l i n g p r o g r a m e x e c u t i o n

When Smart Step is off, classes in the Classes with tracing disabled view,
along with the Smart Step options, are ignored, so you’ll be able to step
into all of these classes.

Tracing into classes with no source available
This is a feature of

JBuilder SE and
Enterprise

If you turn Smart Step off when you’re using a class but don’t have its
source file available, a stub source file is generated and appears as you
trace through your code. The stub source file shows only the method
signatures for the class. To avoid seeing stub source, keep the class in the
Classes with tracing disabled view and leave Smart Step on.

Stub source files
If stub source is generated for files for which you have source available,
check the source path. The debugger looks in your source path for source
files. The source path is described in “Source path” on page 4-10. The .java
file being debugged has to exist in a branch that is the same as its package
name.

For example, if your source path contains one item:

c:\MyProjects\Test\src

and your .java file is in a package called mypackage, the debugger expects
the .java file to exist in the directory:

c:\MyProjects\Test\src\mypackage

The package name is appended to the source item name. If you have
multiple source items, the debugger will try to locate all of them using the
scheme outlined above. If the debugger can’t locate the source file, it
generates stub source.

A stub source file is displayed in the content pane. It contains a header
and method stubs.

Figure 8.8 Stub source file

8-40 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g b r e a k p o i n t s

Breakpoints and tracing disabled settings
Setting a breakpoint in a class in the Classes with tracing disabled view
overrides tracing settings; you will pause in the class because you
explicitly instructed the debugger to go to that point.

A warning dialog box, the Stopped In Class With Tracing Disabled dialog
box, will be displayed if:

• Smart Step is on, and

• The Warn If Break In Class With Tracing Disabled option is on in the
Debug page of the Runtime Properties dialog box.

Figure 8.9 Stopped In Class With Tracing Disabled dialog box

In this situation, stepping after the breakpoint is hit will cause the
debugger to go out of that class. To stay in that class, turn Smart Step off,
then use the stepping buttons.

Using breakpoints
When your program execution encounters a breakpoint, the program is
suspended, and the debugger displays the line containing the breakpoint
in the editor. You can then use the debugger to view the state of your
program. Breakpoints are flexible in that they can be set before you begin
a program run or at any time that the debugger has control. By setting
breakpoints in potential problem areas of your source code, you can run
your program without pausing until the program’s execution reaches a
location you want to debug.

Breakpoints are displayed and manipulated in the Data and code
breakpoints view. The type of breakpoint and its status are displayed,
along with information specific to the breakpoint type, such as line
number, class name or method name. You can use the right-click menu to
enable and disable breakpoints, as well as add and remove them.

D e b u g g i n g J a v a p r o g r a m s 8-41

U s i n g b r e a k p o i n t s

Figure 8.10 Data and code breakpoints view

Setting breakpoints

Class, method,
exception, and field

breakpoints are features
of JBuilder SE and

Enterprise.
Cross-process

breakpoints are a feature
of JBuilder Enterprise.

You can set line, exception, class, method, field, and cross-process
breakpoints in the debugger:

• A line breakpoint is set on a specific line of Java or non-Java source
code. The debugger stops on that line.

• An exception breakpoint causes the debugger to stop when the
specified exception is about to be thrown.

• A class breakpoint causes the debugger to stop when any method from
the specified class is called or when the specified class is instantiated.

• A method breakpoint causes the debugger to stop when the specified
method in the specified class is called.

• A field breakpoint causes the debugger to stop when the specified field
is about to be read or written to. A field is a Java variable that is defined
in a Java object.

• A cross-process breakpoint causes the debugger to stop when either
any method or the specified method in the specified class in a separate
process are stepped into.

Setting a line breakpoint
A line breakpoint causes the debugger to stop when it reaches that
particular line of code. Line breakpoints can be set in either Java or
non-Java source code. You can set a line breakpoint directly in the editor
or use the Add Line Breakpoint dialog box.

To set a line breakpoint in source code, click the left margin of the line you
want to set the breakpoint on. You can also press F5 when on a line of
source code to toggle a line breakpoint. When the debugger has focus,

8-42 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g b r e a k p o i n t s

small blue dots are displayed in the editor to the left of lines of
executable code, indicating that a breakpoint can be set on that line.

Breakpoints set on comment lines, declarations, or other non-executable
lines of code are invalid. Invalid breakpoints are indicated by in the
gutter of the editor when you run your program.

To set a line breakpoint using the Add Line Breakpoint dialog box, do one
of the following:

• Before or during a debugging session, select Run|Add Breakpoint and
choose Add Line Breakpoint.

• When you’re in a debugging session, click the down-facing arrow to the
right of the Add Breakpoint button on the debugger toolbar and choose
Add Line Breakpoint.

• When you’re in a debugging session, right-click an empty area of the
Data and code breakpoints view and choose Add Line Breakpoint.

The Add Line Breakpoint dialog box is displayed.

To set a line breakpoint, choose the following options:

1 If you’re setting a breakpoint in a Java .class file, use the Class Name
field. If the breakpoint is in a file that is not a .class file, use the File
Name field.

• If the file is a .class file, either enter the name or choose the ellipsis
(...) button to browse to a .class file.

• If the file is not a .class file, choose the ellipsis (...) button to browse
to the file.

D e b u g g i n g J a v a p r o g r a m s 8-43

U s i n g b r e a k p o i n t s

2 In the Line Number field, enter the number of the line to set the
breakpoint on.

3 Choose the Actions for the breakpoint. The debugger can stop
execution at the breakpoint, display a message, or evaluate an
expression. For more information, see “Setting breakpoint actions” on
page 8-51. (Actions are a feature of JBuilder SE and Enterprise.)

4 In the Condition field, set the breakpoint condition, if one exists, for this
breakpoint. For more information, see “Creating conditional
breakpoints” on page 8-52.

5 In the Pass Count field, set the number of times this breakpoint must be
passed in order for the breakpoint to be activated. For more
information, see “Using pass count breakpoints” on page 8-53.

6 Click OK to close the dialog box.

If the breakpoint is valid (set on an executable line of code), the line on
which the breakpoint is set becomes highlighted, and a red circle icon
with a checkmark appears in the left margin of the breakpointed line.

Setting an exception breakpoint
Exception breakpoints

are features of JBuilder
SE and Enterprise

An exception breakpoint causes the debugger to stop when the specified
exception is about to be thrown. The debugger can stop on caught and/or
uncaught exceptions. To set an exception breakpoint, use the Add
Exception Breakpoint dialog box.

To open the Add Exception Breakpoint dialog box, do one of the
following:

• Before or during a debugging session, select Run|Add Breakpoint and
choose Add Exception Breakpoint.

• When you’re in a debugging session, click the down-facing arrow to the
right of the Add Breakpoint button on the debugger toolbar and choose
Add Exception Breakpoint.

• When you’re in a debugging session, right-click an empty area of the
Data and code breakpoints view and choose Add Exception
Breakpoint.

8-44 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g b r e a k p o i n t s

The Add Exception Breakpoint dialog box is displayed.

To set an exception breakpoint,

1 Enter the name of the exception class file on which the debugger will
stop in the Class Name field. You can either enter the name or choose
the ellipsis (...) button to browse to a .class file.

2 Choose when the debugger should stop:

• Select the Caught option to force the debugger to stop when the
exception is caught.

• Select the Uncaught option to force the debugger to stop when the
exception is not caught.

You can also choose both Caught and Uncaught to force the debugger
to stop in both cases.

3 Choose the Actions for the debugger. The debugger can stop execution
at the breakpoint, display a message, or evaluate an expression. For
more information, see “Setting breakpoint actions” on page 8-51.
(Actions are a feature of JBuilder SE and Enterprise.)

4 In the Condition field, set the condition, if one exists, for this
breakpoint. For more information, see “Creating conditional
breakpoints” on page 8-52.

5 In the Pass Count field, set the number of times this breakpoint must be
passed in order for the breakpoint to be activated. For more
information, see “Using pass count breakpoints” on page 8-53.

6 Click OK to close the dialog box.

D e b u g g i n g J a v a p r o g r a m s 8-45

U s i n g b r e a k p o i n t s

Setting a class breakpoint
Class breakpoints are

features of JBuilder SE
and Enterprise

A class breakpoint causes the debugger to stop when any method from
the specified class is called or when the specified class is instantiated. To
set a class breakpoint, use the Add Class Breakpoint dialog box.

To open the Add Class Breakpoint dialog box, do one of the following:

• Before or during a debugging session, select Run|Add Breakpoint and
choose Add Class Breakpoint.

• When you’re in a debugging session, click the down-facing arrow to the
right of the Add Breakpoint button on the debugger toolbar and choose
Add Class Breakpoint.

• When you’re in a debugging session, right-click an empty area of the
Data and code breakpoints view and choose Add Class Breakpoint.

The Add Class Breakpoint dialog box is displayed.

To set a class breakpoint,

1 Enter the name of the class file you want the debugger to stop on in the
Class Name field. You can either enter the name or choose the ellipsis
(...) button to browse to a .class file.

2 Choose the Actions for the debugger. The debugger can stop execution
at the breakpoint, display a message, or evaluate an expression. For
more information, see “Setting breakpoint actions” on page 8-51.
(Actions are a feature of JBuilder SE and Enterprise.)

3 In the Condition field, set the condition, if one exists, for this
breakpoint. For more information, see “Creating conditional
breakpoints” on page 8-52.

4 In the Pass Count field, set the number of times this breakpoint must be
passed in order for the breakpoint to be activated. For more
information, see “Using pass count breakpoints” on page 8-53.

5 Click OK to close the dialog box.

8-46 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g b r e a k p o i n t s

Setting a method breakpoint
Method breakpoints are
features of JBuilder SE

and Enterprise

A method breakpoint causes the debugger to stop when the specified
method in the specified class is called. To set a method breakpoint, use the
Add Method Breakpoint dialog box.

To open the Add Method Breakpoint dialog box, do one of the following:

• Before or during a debugging session, select Run|Add Breakpoint and
choose Add Method Breakpoint.

• When you’re in a debugging session, click the down-facing arrow to the
right of the Add Breakpoint button on the debugger toolbar and choose
Add Method Breakpoint.

• When you’re in a debugging session, right-click an empty area of the
Data and code breakpoints view and choose Add Method Breakpoint.

The Add Method Breakpoint dialog box is displayed.

To set a method breakpoint,

1 Enter the name of the class that contains the method you want the
debugger to stop on in the Class Name field. You can either enter the
name or choose the ellipsis (...) button to browse to a .class file.

2 In the Method field, enter the name of the method you want the
debugger to stop on. Click the Method button to browse to the method
you want.

3 In the Method Arguments field, enter a comma-delimited list of
method arguments. This causes the debugger to stop only when the
method name and argument list match. This is useful for overloaded
methods. If you used the browser to add the method, method
arguments are automatically filled in. If you don’t specify any
arguments, the debugger stops at all methods with the specified
method name.

D e b u g g i n g J a v a p r o g r a m s 8-47

U s i n g b r e a k p o i n t s

4 Choose the Actions for the debugger. The debugger can stop execution
at the breakpoint, display a message, or evaluate an expression. For
more information, see “Setting breakpoint actions” on page 8-51.
(Actions are a feature of JBuilder SE and Enterprise.)

5 In the Condition field, set the condition, if one exists, for this
breakpoint. For more information, see “Creating conditional
breakpoints” on page 8-52.

6 In the Pass Count field, set the number of times this breakpoint must be
passed in order for the breakpoint to be activated. For more
information, see “Using pass count breakpoints” on page 8-53.

7 Click OK to close the dialog box.

Setting a field breakpoint
Field breakpoints are

features of JBuilder SE
and Enterprise

A field breakpoint causes the debugger to stop when the specified field is
about to be read or written to, depending on your choices. A field is a Java
variable that is defined in a Java object. In the following example:

class Test {
 private int x;
 private Object y;
}
Test myTest = new Test();

myTest is a variable. The Java variables x and y are fields.

To add a field breakpoint, right-click a field variable in the Threads, call
stacks, and data view and choose Add Field Breakpoint. The breakpoint is
automatically added to the Data and code breakpoints view. A field
breakpoint is indicated with .

To control whether the debugger breaks on a read or a write action, open
the Data and code breakpoints view. Right-click the field breakpoint you
just set. By default, the Break On Read and Break On Write commands in
the context menu are enabled, meaning that the debugger will stop when
the specified field is about to be read or written to. You can turn off one or
both of these options, allowing the debugger to continue, instead of stop,
when the field is about to be read or written to.

Setting a cross-process breakpoint
Cross-process

breakpoints are features
of JBuilder Enterprise

A cross-process breakpoint causes the debugger to stop when you step
into any method or the specified method in the specified class in a
separate process. This allows you to step into a server process from a
client process, rather than having to set breakpoints on the client side and
on the server side. You will usually set a line breakpoint on the client side
and a cross-process breakpoint on the server side. For a tutorial that walks
through cross-process stepping, see Chapter 19, “Tutorial: Remote
debugging.”

8-48 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g b r e a k p o i n t s

To activate a cross-process breakpoint set on a server process,

1 Start the server process on the remote computer in debug mode.

2 On the client computer, from within JBuilder, attach to the server
already running on the remote computer.

3 Set a line breakpoint in the client code and start debugging the client.
At the breakpoint, step into the server code. Do not use Step Over—
stepping over will not stop at the cross-process breakpoint.

Note You can use cross-process breakpoints to debug locally, for example a
client/server application running on one computer.

To set a cross-process breakpoint, use the Add Cross-Process Breakpoint
dialog box. To open the Add Cross-Process Breakpoint dialog box, do one
of the following:

• Before or during a debugging session, select Run|Add Breakpoint and
choose Add Cross-Process Breakpoint.

• When you’re in a debugging session, click the down-facing arrow to the
right of the Add Breakpoint button on the debugger toolbar and choose
Add Cross-Process Breakpoint.

• When you’re in a debugging session, right-click an empty area of the
Data and code breakpoints view and choose Add Cross-Process
Breakpoint.

The Add Cross-Process Breakpoint dialog box is displayed.

For a tutorial that explains cross-process stepping, see Chapter 19,
“Tutorial: Remote debugging.”

D e b u g g i n g J a v a p r o g r a m s 8-49

U s i n g b r e a k p o i n t s

To set a cross-process breakpoint,

1 Enter the name of the server-side class that contains the method you
want the debugger to stop on in the Class Name field. You can either
enter the name or choose the ellipsis (...) button to browse to a .class
file.

2 In the Method field, enter the name of the method you want the
debugger to stop on. Use the ellipsis (...) button to display the Select
Method dialog box where you can browse through the methods
available in the selected class.

The method name is not required. If you do not specify the method
name, the debugger stops at all method calls in the specified class.

Note You cannot select a method if the selected class contains syntax or
compiler errors.

3 In the Method Arguments field, enter a comma-delimited list of
method arguments. This causes the debugger to stop when the method
name and argument list match. This is useful for overloaded methods.

• If you don’t specify any arguments, the debugger stops at all
methods with the specified method name.

• If you choose a method name from the Select Method dialog box, the
Methods Argument field is automatically filled in.

4 Choose the Actions for the debugger. The debugger can stop execution
at the breakpoint, display a message, or evaluate an expression. For
more information, see “Setting breakpoint actions” on page 8-51.
(Actions are a feature of JBuilder SE and Enterprise.)

5 In the Condition field, set the condition, if one exists, for this
breakpoint. For more information, see “Creating conditional
breakpoints” on page 8-52.

6 In the Pass Count field, set the number of times this breakpoint must be
passed in order for the breakpoint to be activated. For more
information, see “Using pass count breakpoints” on page 8-53.

7 Click OK to close the dialog box.

8-50 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g b r e a k p o i n t s

8 Set a line breakpoint in the client on the method that calls the
cross-process breakpoint.

9 Click the Step Into button on the debugger toolbar to step into the
server-side breakpointed method. (If you use Step Over, the debugger
will not stop.)

Setting breakpoint properties

Once you’ve created a breakpoint, you can set or change its properties. To
set breakpoint properties,

1 Open the Data and code breakpoints view.

2 Choose the breakpoint you want to set properties for. Right-click and
choose Breakpoint Properties.

The Breakpoint Properties dialog box is displayed.

Note The Breakpoint Properties dialog box contains the same options as the
dialog box you used to create the breakpoint.

3 You can change the following properties:

• Actions

The actions to be performed when the breakpoint is hit. The
debugger can stop execution at the breakpoint, display a message or
evaluate an expression. For more information, see “Setting
breakpoint actions” on page 8-51.

• Condition

The condition, if one exists, for this breakpoint. For more
information, see “Creating conditional breakpoints” on page 8-52.

• Pass Count

The number of times this breakpoint must be passed in order for the
breakpoint to be activated. For more information, see “Using pass
count breakpoints” on page 8-53.

To display the Breakpoint Properties dialog box in read-only mode,
position the mouse in the gutter next to the breakpointed line. Press Ctrl
plus the right mouse button. The core properties for the breakpoint are
displayed, but they are read-only. You can edit the Actions, Conditions
and Pass Count fields.

D e b u g g i n g J a v a p r o g r a m s 8-51

U s i n g b r e a k p o i n t s

Setting breakpoint actions

This is a feature of
JBuilder SE and

Enterprise

You can select one more actions to be performed when a breakpoint
occurs. The debugger can:

• Stop program execution and display a message in the debugger status
bar (the default).

• Log a message in the Console output, input, and errors view.

• Evaluate an expression and log the results.

Actions are defined in the middle area of the Breakpoints dialog box.

Figure 8.11 Breakpoint actions

Stopping program execution
To stop program execution when the specified breakpoint is hit, choose
the Stop Execution option. If you stop program execution, the debugger
will stop at the specified breakpoint, display a status message on the
debugger toolbar, and display the breakpoint in the Data and code
breakpoints window.

The exact message displayed in the status bar depends on the type of
breakpoint. The following example shows the status bar message for a line
breakpoint.

Figure 8.12 Breakpoint status bar message

Logging a message
To log a message to the Console output, input and errors view when the
breakpoint is hit, choose the Log Message option and enter a message in
the Evaluate Expression box. When the debugger reaches the selected
breakpoint, a message will be logged to the view. If the Stop Execution
option is also selected the program will stop. Otherwise, it will continue to
run.

Logging a message with a println statement
You can use println statements to log output messages. The following
example shows a message in the Code and data breakpoints view that was

8-52 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g b r e a k p o i n t s

logged with the statement - System.out.println("Breakpoint reached"). The
statement was entered in the Evaluate Expression input box and the Log
Message option was checked.

Logging a message with expression evaluation
You can also use expression evaluation, instead of println statements, to
log messages while debugging. To do this, enter an expression in the
Evaluate Expression input field. The debugger will evaluate this
expression when the breakpoint is hit and write the results of the
evaluation to the Console output, input, and errors view. The expression
can be any valid Java language statement.

This option is available only if you select the Log Message option. Note
that you can choose to stop program execution when an expression is
evaluated, by choosing the Stop Execution option.

The following example shows the results of an expression valueOneText.
The expression was entered in the Evaluate Expression field, with the Log
Message option checked.

The Only Log Message option allows you to log only the results of this
expression, so that the log is not cluttered with other information.

Creating conditional breakpoints

When a breakpoint is first set, by default it suspends the program
execution each time the breakpoint is encountered. However, the
Breakpoint Properties dialog box allows you to customize breakpoints so
that they are activated only in certain conditions.

By entering a boolean expression in the Condition field, you can make a
breakpoint conditional—program execution will stop at this breakpoint
only if the condition evaluates to true. You can also base a breakpoint on a
pass count, specified in the Pass Count field. This field is useful for
debugging loops. Program execution stops at the breakpoint after it passes
the loop the specified number of times.

Conditions are defined at the bottom of the Breakpoints dialog box.

D e b u g g i n g J a v a p r o g r a m s 8-53

U s i n g b r e a k p o i n t s

Figure 8.13 Conditional breakpoints

Setting the breakpoint condition
The Condition edit box in the Breakpoint Properties dialog box lets you
enter an expression that is evaluated each time the breakpoint is
encountered during the program execution.

• If the condition evaluates to true, the debugger stops at the breakpoint
location if the Stop Execution option is on.

• If the condition evaluates to false, the debugger doesn’t stop at the
breakpoint location.

Conditional breakpoints let you see how your program behaves when a
variable falls into a certain range or what happens when a particular flag
is set.

For example, suppose you want a breakpoint to suspend execution on a
line of code only when the variable mediumCount is greater than 10. To do so,

1 Set a breakpoint on a line of code, by clicking to the left of the line in the
editor.

2 Right-click and choose Breakpoint Properties.

3 Enter the following expression into the Condition edit box, and click
OK:

mediumCount > 10

You can enter any valid Java language expression into the Condition edit
box, but all symbols in the expression must be accessible from the
breakpoint’s location.

Using pass count breakpoints
The Pass Count condition in the Breakpoint Properties dialog box
specifies the number of times that a breakpoint must be passed in order
for the breakpoint to be activated. The debugger suspends the program
the nth time that the breakpoint is encountered during the program run.
The default value of n is 1.

Pass counts are useful when you think that a loop is failing on the nth
iteration. When pass counts are used with boolean conditions, program
execution is suspended the nth time the condition is true.

8-54 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g b r e a k p o i n t s

Disabling and enabling breakpoints
Disabling a breakpoint hides it from the current program run. When you
disable a breakpoint, all the breakpoint settings remain defined, but the
breakpoint is hidden from the execution of your program—your program
will not stop on a disabled breakpoint. Disabling a breakpoint is useful if
you have defined a conditional breakpoint that you don’t need to use now
but might need to use at a later time:

• To disable a single breakpoint, right-click it in the Data and code
breakpoints view. Choose Enable Breakpoint to toggle the command
and disable the breakpoint. When this toggle is off, the breakpoint is
disabled and will not be stopped at. When it is on, the breakpoint is
enabled and will be stopped at. Breakpoints are enabled by default.

• To disable or enable all breakpoints set for a debugging session, open
the Data and code breakpoints view. Right-click an empty area of the
view and choose Disable All or Enable All.

You can also disable breakpoints for a runtime configuration. If two or
more runtime configurations are defined for the current project, the menu
command Disable For Configuration will be available when you
right-click a breakpoint. You choose the configuration(s) to disable this
breakpoint for. When you debug using the specified configuration, the
selected breakpoint will be disabled.

Deleting breakpoints
When you no longer need to examine the code at a breakpoint location,
you can delete the breakpoint from the debugging session. You can delete
a line breakpoint in the editor. Delete other types of breakpoints with the
Data and code breakpoints view.

Note that you cannot delete the default breakpoint, all uncaught
exceptions. You can, however, disable it.

Use any of the following methods to delete breakpoints:

• In the editor, place the cursor in the line containing the breakpoint,
press F5 or right-click and choose Toggle Breakpoint.

• From the Data and code breakpoints view, highlight the breakpoint you
want removed, right-click, and choose Remove Breakpoint or press Delete.

• To delete all breakpoints set for a debugging session, open the Data and
code breakpoints view. Right-click an empty area of the view and
choose Remove All.

• Select a group of breakpoints in the Data and code breakpoints view
and press Delete.

Warning The breakpoint delete commands are not reversible.

D e b u g g i n g J a v a p r o g r a m s 8-55

E x a m i n i n g p r o g r a m d a t a v a l u e s

Locating line breakpoints

If a line breakpoint isn’t displayed in the editor, you can use the Data and
code breakpoints view to quickly find the breakpoint’s location in your
source code.

To locate a line breakpoint,

1 In the Data and code breakpoints view, select a line breakpoint.

2 Right-click, and select Go To Breakpoint. You can also double-click the
selected breakpoint.

The editor shows the breakpoint’s location.

Examining program data values
Even though you can discover many interesting things about your
program by running and stepping through it, you usually need to
examine the values of program variables to uncover bugs. For example,
it’s helpful to know the value of the index variable as you step though a
for loop, or the values of the parameters passed in a method call.

When you pause your program while debugging, you can examine the
values of instance variables, local variables, properties, method
parameters, and array items.

Data evaluation occurs at the level of expressions. An expression consists
of constants, variables, and values in data structures, possibly combined
with language operators. In fact, almost anything you use on the right side
of an assignment operator can be used as a debugging expression.

JBuilder has several features enabling you to view the state of your
program, which are described in the table below.

Table 8.24 Debugger features

Feature Enables

Loaded classes and
static data view

Viewing classes currently loaded by the program, and the
static data, if any, for those classes.

Threads, call stack and
data view

Viewing the thread groups in your program. Each thread
group expands to show its threads and contains a stack
frame trace representing the current method call
sequence. Each stack frame can expand to show data
elements that are in scope.

Data watches view Viewing the current values of variables that you want to
track. A watch evaluates an expression according to the
current context. If you move to a new context, the
expression is re-evaluated for the new context. If it is no
longer in scope, it cannot be evaluated.

8-56 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x a m i n i n g p r o g r a m d a t a v a l u e s

How variables are displayed in the debugger

Variables can have different scope—there are static, or class variables,
local variables, and member variables. A variable can hold a single value,
such as a scalar (a single number), or multiple values, such as an array.

Static variable display
Static variables are displayed in the Loaded classes and static data view.
When you expand the tree of loaded classes, all static variables defined for
a class and their values are displayed. You can use the context menu to set
watches on these variables, change values of primitive data types, or
toggle the base display value.

Figure 8.14 Loaded classes and static data view

Local and member variable display
Local and member variables are displayed in the Threads, call stacks, and
data view. When you expand a thread group, a stack frame trace
representing the current method call sequence is displayed. To display
member variables, when you are in the class itself, expand the this object.
When you expand that node, you see all of the variables that are members
of that class and the instantiation that you are working through.
Grayed-out elements are inherited.

You can then use the context menu to set watches on these variables, and,
if the variable is an array, create an array watch and determine how many
array elements will display in the view. You can also create a watch for the
this object.

Evaluate/Modify
dialog box

Evaluating expressions, method calls, and variables.

ExpressionInsight Viewing the values of expressions.

Table 8.24 Debugger features (continued)

Feature Enables

D e b u g g i n g J a v a p r o g r a m s 8-57

E x a m i n i n g p r o g r a m d a t a v a l u e s

Figure 8.15 Threads, call stacks, and data view

Note The split window is a feature of JBuilder SE and Enterprise.

Changing data values

You can use the Data watches view, the Threads, call stacks, and data
view, and the Loaded classes and static data view to examine and modify
data values for variables.

You can directly edit the value of a string or any primitive data type,
including numbers and booleans, by right-clicking and choosing Change
Value. (This is a feature of JBuilder SE and Enterprise.)

Changing variable values
This is a feature of

JBuilder SE and
Enterprise

To change the value of a variable,

1 Select the variable whose value you want to modify.

2 Right-click and choose Change Value.

The Change Value dialog box is displayed.

3 Enter the new value. The new value must match the type of the existing
value. The dialog box instructions state what type of value is expected.
If the type doesn’t match, the value will not be changed. A String
constant must be surrounded by opening and closing ” characters; a
char constant value must be surrounded by opening and closing ‘
characters.

4 Click OK.

To change the display base of a numeric variable, right-click and choose
Show Hex/Decimal Value. This command is a toggle—if the value is
displayed in hex, it will display in decimal and vice versa.

8-58 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x a m i n i n g p r o g r a m d a t a v a l u e s

Note In these dialog boxes, the previous selection is remembered and
preserved. For example, when a node is redrawn, a breakpoint hit or a
stepping button clicked, the value in the dialog box remains the same.

Changing object/primitive variables
This is a feature of

JBuilder SE and
Enterprise

Object/primitive variables can be cut, copied, and pasted into other
objects/primitives by using the Cut, Copy, and Paste commands on the
context menus. If an object is pasted into another variable, both object
variables will point to the same object. (The Cut, Copy, and Paste
commands are features of JBuilder SE and Enterprise.)

Changing variable array values
You can change the value of an array element by right-clicking on the
element you want to change and choosing Change Value. See “Changing
data values” on page 8-57 for more information.

You can also change how the array is displayed. You can view the details
of the array by expanding it. However, there might be so many items
displayed that you’ll have to scroll in the view to see all the values. For
easier viewing, you can decrease or increase the number of items shown
with the Adjust Range dialog box. By default, only the first 50 elements of
an array are displayed.

To reduce the number of array elements displayed,

1 Right-click the array (the item in the view preceded by) and choose
Adjust Display Range.

2 The Adjust Range dialog box is displayed.

3 Enter the number of array elements you want to see.

4 Click OK.

You can also hide or display a null value in an array variable. This is
useful when debugging a hash-map object. To enable this feature,
right-click an array of type Object and choose Show/Hide Null Value.
(This is a feature of JBuilder SE and Enterprise.)

Note In this dialog box, the previous selection is remembered and preserved.
For example, when a node is redrawn, a breakpoint hit or a stepping
button clicked, the value in the dialog box remains the same.

D e b u g g i n g J a v a p r o g r a m s 8-59

E x a m i n i n g p r o g r a m d a t a v a l u e s

Watching expressions

Watches enable you to monitor the changing values of variables or
expressions during your program run. After you enter a watch expression,
the Data watches view displays the current value of the expression. As
you step through your program, watch expressions will be evaluated
when they are in scope.

Watch expressions that return an object or array value can be expanded to
show the data elements that are in scope. For example, if you set a watch
on a this object, or on a single object, the watch can be expanded.
However, if you set a watch on a primitive value, the watch can’t be
expanded since it’s a single item. The grayed-out items in the expanded
view are inherited.

Figure 8.16 Data watches view

You can set two types of watches:

• Variable watches

• Object watches

Variable watches
There are two types of variable watches:

• Named variable watches

• Scoped variable watches

Named variable watches
A named variable watch is added on a name—as you move around in
your code, whatever variable has the name you selected in the current
context will be the one evaluated for the watch. If no variable has the
name you select, the debugger will display the following message in the
Data watches view:

variable name = <is not in scope>

8-60 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x a m i n i n g p r o g r a m d a t a v a l u e s

To add a named watch, use the Add Watch dialog box. To display this
dialog box,

• Choose Run|Add Watch. Enter the expression to watch in the
Expression field. You can optionally enter a description in the
Description field.

• In the editor, select the expression you want to monitor. Then
right-click, and choose Add Watch. The expression is automatically
entered in the Add Watch dialog box. You can optionally enter a
description in the Description field.

Scoped variable watches
This is a feature of

JBuilder SE and
Enterprise

A scoped variable watch watches the variable in the scope (or context) in
which you created the watch. As you move around in code, only the
specific variable’s value will be displayed. Scoped variable watches are
features of JBuilder SE and Enterprise.

If the scoped variable watch expression is not in scope, the debugger will
display the following message:

variable name = <is not in scope>

When the expression is in scope, the debugger will display its value.

To add a scoped variable watch, choose the variable you want to watch
from the Threads, calls stacks, and data view. Then, right-click. The menu
allows you to add a scoped watch for the selected type of variable,
including:

• Field—A Java variable defined in a Java object.

• Static field—A Java variable defined as static (a class variable).

• Local variable—A variable that is local to a method or constructor.

• ‘this’ object—The class instantiation you are working through.

• Array—A collection of identical objects.

• Array component—An individual array element.

• String—A Java String type.

D e b u g g i n g J a v a p r o g r a m s 8-61

E x a m i n i n g p r o g r a m d a t a v a l u e s

The following table shows how some of these types of watches are
displayed in the Data watches view:

Object watches
This is a feature of

JBuilder SE and
Enterprise

An object watch watches a specific Java object.

To add an object watch,

1 Choose the object you want to watch. You can choose an object in the
Data watches view, the Threads, calls stacks, and data view, or the
Loaded classes and static data view.

2 Right-click and choose Create Object Watch.

A this object watch watches the current instantiation of the selected object.

Editing a watch
To edit a watch expression, select the expression in the Data watches view,
then right-click. Choose Change Watch.

• To change the watch name, enter the new name in the Expression field.

• To change the watch description, enter the new name in the Description
field.

Table 8.25 Types of scoped variable watches

Watch types Display Description

Field watch "addResult"DebugTutorial.Frame1.this.addResult:
double=68.0

The field being watched,
addResult, is a primitive type.
It is in DebugTutorial.Frame1. Its
value is 68.0.

Local variable
watch

"valueOneDouble"valueOneDouble:
java.lang.double={java.lang.Double@354}

The local variable being
watched is valueOneDouble. It is
defined as a Double object.

Object watch "DebugTutorial.Frame1"<reference>DebugTutorial.Frame1=
{DebugTutorial.Frame1@353}

The object being watched is
DebugTutorial.Frame1. The
object expands to show data
members.

this watch "this" this:{DebugTutorial.Frame1@353} The current instantiation of
DebugTutorial.Frame1. The
object expands to show data
members for the current
instantiation.

Array watch "valueOneText"<reference>char[]=char[2] The array being watched is
called valueOneText. It contains
two array elements.

Array component
watch

"[0] = '3' The first element of the array
valueOneText. It contains the
value ‘3.’

8-62 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x a m i n i n g p r o g r a m d a t a v a l u e s

Deleting a watch
To delete a watch expression, select the expression in the Data watches
view, then select Remove Watch or press Delete. You can delete all watches
by right-clicking in an empty area of the Data watches view and choosing
Remove All.

Caution The Remove All command cannot be reversed.

Evaluating and modifying expressions

You can evaluate expressions, change the values of data items, and
evaluate method calls with the Evaluate/Modify dialog box (Run|
Evaluate/Modify). This can be useful if you think you’ve found the
solution to a bug, and you want to try the correction before exiting the
debugger, changing the source code, and recompiling the program.
CodeInsight and syntax highlighting display when you enter an
expression into the Expression field.

To open the Evaluate/Modify dialog box, choose Run|Evaluate/Modify.

Evaluating expressions
To evaluate an expression, enter the expression in the Expression field. If
the expression is already selected in the editor, it is automatically entered
into the Expression field. Then, click the Evaluate button. You can use this
dialog box to evaluate any valid language expression, except expressions
that are outside the current scope. If the result is an object, note that the
contents of the object are displayed.

Figure 8.17 Expression evaluation in the Evaluate/Modify dialog box

Evaluating method calls
This is a feature of

JBuilder SE and
Enterprise

The results of a method call can also be evaluated. To evaluate a method
call, enter the method and its parameters in the Expression field of the
Evaluate/Modify dialog box. Click Evaluate.

D e b u g g i n g J a v a p r o g r a m s 8-63

E x a m i n i n g p r o g r a m d a t a v a l u e s

In this example, the method return value evaluated to true.

Figure 8.18 Method evaluation in the Evaluate/Modify dialog box

Modifying the values of variables
This is a feature of

JBuilder SE and
Enterprise

You can change the values of variables during the course of a debugging
session to test different error hypotheses and see how a section of code
behaves under different circumstances.

When you modify the value of a variable through the debugger, the
modification is effective for that specific program run only—the changes
you make through the Evaluate/Modify dialog box do not affect your
program source code or the compiled program. To make your change
permanent, you must modify your program source code in the editor,
then recompile your program.

To modify the value of a variable, enter:

variable = <new value>

in the Expression edit box. The debugger will display the results in the
Result display box. Note that the result must evaluate to a result that is
type compatible with the variable.

Note Both the Expression and New Value fields support CodeInsight.

You can also modify the value of a variable using these steps:

1 Open the Evaluate/Modify dialog box, then enter the name of the
variable you want to modify in the Expression edit box.

2 Click Evaluate to evaluate the variable.

3 Enter a value into the New Value edit box (or select a value from the
drop-down list), then click Modify to update the variable.

The expression in the Expression input box or the new value in the New
Value box needs to evaluate to a result that is type-compatible with the
variable you want to assign it to. In general, if the assignment would cause
a compile-time or runtime error, it’s not a legal modification value.

8-64 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

M o d i f y i n g c o d e w h i l e d e b u g g i n g

For example, assume that valueOneText is a String object. If you enter:

valueOneText=34

in the Expression input field, the following message, indicating a type
mismatch, would be displayed in the Results field:

incompatible types; found int; required java.lang.String

You would need to enter:

valueOneDouble="34"

in the Expression input field in order for the expression to be set to the
new value.

Modifying code while debugging
This is a feature of
JBuilder Enterprise

The debugger allows you to make changes in source code while
debugging. You can either update all class files in your project, or update
individual ones.

Updating all class files

When files are modified while debugging, the Smart Swap button on the
debugger toolbar is available. When you click this button, all modified
files in your project are compiled and updated. With Smart Swap, you can
test your code, make changes, and continue debugging in the same
debugger session, from the current execution point.

To use Smart Swap,

1 Open the source code for the file(s) you want to modify.

2 Change the source code.

3 Click the Smart Swap button or choose Run|Smart Swap.

Smart Swap compiles all modified files in the project. You will continue
debugging in the same debugging session.

Important If the Target VM for your project (Project Properties|Build|Java) is set to
All Java SDKs, Smart Swap may not work properly. The All Java SDKs
Target VM option generates class files that can be loaded by any VM. This
class file, however, will include code that instructs the class loader to
verify all classes that are referenced in this class. If the referenced classes
have not been loaded yet, the class loader will load the class file in its
cache. Smart Swap cannot access this cache to update it. Consequently,
when you are debugging and make a change to a class file that has not yet
been loaded, the debugger will not be able to see the changes that you
have made. To work around this, add the following VM parameter to the
VM Parameters field on the Run page of the Runtime Configurations

D e b u g g i n g J a v a p r o g r a m s 8-65

M o d i f y i n g c o d e w h i l e d e b u g g i n g

dialog box. (You only need to add this parameter when selecting All Java
SDKs for the target VM.)

-Xverify:none

This VM parameter instructs the class loader to verify only the current
class.

Updating individual class files

While debugging, you can also update just individual classes in your
project. To update a single class file while debugging,

1 Before debugging, make sure the Update Classes After Compiling
option on the Debug page of the Runtime Configuration Properties
dialog box is on.

2 While debugging, open the source code for the file(s) you want to
modify.

3 Right-click the file in the project pane and choose Make. JBuilder will
automatically compile the file and update the classes. You will continue
in the same debugging session.

Note If the Update Classes After Compiling option is off (Debug page|Runtime
Configuration Properties dialog box) and the Warn If Files Modified
option on that page is on, the Files Modified dialog box is displayed,
where you choose how to proceed. You can:

• Compile, update the compiled classes, and continue the debugging
session

• Resume the debugging session without compiling and updating

• Restart the debugging session

Resetting the execution point

Once you’ve modified code, you might want to reset the execution point
(you’ll still be in the same debugging session, however). Resetting the
execution point allows you to return to a point prior to your changed
value, so you can retest it to see if your fix works. For more information,
see “Setting the execution point” on page 8-29.

Options for modifying code

The options at the top of the Debug page of the Runtime Configuration
Properties dialog box control how files modified during a debugging
session are handled.

8-66 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

M o d i f y i n g c o d e w h i l e d e b u g g i n g

Figure 8.19 Debug page of Runtime Configuration Properties dialog box

• The Update Classes After Compiling option automatically updates any
changed file(s) that are compiled. When this option is on, you won’t be
warned that you’ve modified source code if you compile the modified
files. If this option is off and the Warn If Files Modified option is on, the
Files Modified dialog box will be displayed, allowing you to determine
how to continue.

• The Warn If Files Modified option displays the Files Modified dialog
box, where you choose how to continue. The Files Modified dialog box
looks like this:

D e b u g g i n g J a v a p r o g r a m s 8-67

C u s t o m i z i n g t h e d e b u g g e r

You can choose to:

• Update files and continue in the same debugging session,

• Resume debugging without updating files, or

• Start a new debugging session.

If you start a new session, the current session will be stopped and the
execution point will be reset to the beginning of the program. If you
resume the current session, you will begin execution at the current
execution point.

Customizing the debugger
You can customize the colors used to indicate the execution point and
enabled, disabled, and invalid breakpoint lines.

Customizing the debugger display

To set execution point and breakpoint colors,

1 Select Tools|Editor Options.

The Editor Options dialog box is displayed.

2 Select the Color tab to display the Color page.

3 In the Screen Element list, select an element related to debugging, then
select the background and foreground colors for the element.

8-68 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C u s t o m i z i n g t h e d e b u g g e r

Screen elements related to debugging are:

• Default breakpoint
• Disabled breakpoint
• Execution backtrace
• Execution point
• Invalid breakpoint
• Verified breakpoint

Setting debug configuration options

Multiple debug
configurations are a

feature of JBuilder SE
and Enterprise

You can either create a stand-alone debug configuration or create one as
part of a runtime configuration. For information on runtime
configurations, see “Setting runtime configurations” on page 7-6.

To set debug configuration options,

1 Choose Run|Configurations.

The Run page of the Project Properties dialog box is displayed.

2 Choose the configuration you want to edit and click Edit.

3 In the Runtime Configuration Properties dialog box, select the Debug tab.

D e b u g g i n g J a v a p r o g r a m s 8-69

C u s t o m i z i n g t h e d e b u g g e r

4 To configure how the debugger handles modified files, set the
following options.

• Update Classes After Compiling

Automatically updates any changed file(s) when compiled. You
won’t be warned that you’ve modified source code if this source
code has been compiled. If this option is off and the Warn If Files
Modified option is on, the Files Modified dialog box will be
displayed, allowing you to determine how to continue. (This is a
feature of JBuilder Enterprise.)

• Warn If Files Modified

Displays the Files Modified dialog box, where you choose how to
continue. You can update files and continue the current debugging
session, resume debugging without updating files, or start a new
debugging session.

5 To enable Smart Step, choose the Enable Smart Step option or click the
Smart Step button on the debugger toolbar. Smart Step is on by default.

6 To configure the Smart Step toggle, set the following options. (Smart
Step configuration is a feature of JBuilder SE and Enterprise.)

• Skip synthetic methods

Skips synthetic methods when stepping into classes.

• Skip constructors

Skips constructors when stepping into classes.

• Skip static initializers

Skips static (class) initializers when stepping into classes.

• Warn if break in class with tracing disabled

Displays a warning message if there is a breakpoint in a class that
has tracing disabled. See “Breakpoints and tracing disabled settings”
on page 8-40 for more information.

For information on remote debugging options, see Chapter 9, “Remote
debugging.” (Remote debugging is a feature of JBuilder Enterprise.)

Setting update intervals

You can also specify the frequency of the intervals that control when
console/process state changes are polled. If the intervals are small, the
debugger/runtime responses for output and other events, like stepping,
will be faster, but JBuilder will be using most of the CPU time.

In general, you can make these settings small, unless you are running
other applications along with JBuilder, or the program you are debugging

8-70 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C u s t o m i z i n g t h e d e b u g g e r

requires a lot of CPU time. If this is the case, you should make the
intervals larger.

To change the update intervals,

1 Choose Tools|IDE Options.

The IDE Options dialog box is displayed.

2 Select the Run/Debug tab to display the Run/Debug page.

3 To set the interval for console output for runtime processes, move the
Console Output slider bar at the top of the dialog box.

4 To set the interval for console output for debug processes, move the
Console Output slider bar in the middle of the dialog box.

5 To set the interval for debug process state updates, move the Process
State slider bar.

R e m o t e d e b u g g i n g 9-1

C h a p t e r

9
Chapter9Remote debugging

This is a feature of
JBuilder Enterprise

JBuilder includes several debugger features that assist in debugging
distributed applications. In particular, it includes support for
cross-process debugging and remote debugging.

This support is additional to the basic debugging features in JBuilder. If
you are new to JBuilder, refer to Chapter 8, “Debugging Java programs”
for information on the JBuilder debugger environment.

Remote debugging is the process of debugging code running on one
computer from another computer. This feature is ideal, for example, in
situations where an application encounters a problem on one networked
computer that is not duplicated on other computers. With JBuilder’s
remote debugger, you can also debug across operating system platforms.

In this chapter, the “client computer” is the computer running JBuilder.
This is the computer you debug from. The “remote computer” runs the
application you want to debug.

There are two ways to debug remotely. You can either

• Launch a program on the remote computer from the client computer
and debug it using JBuilder on the client computer. For more
information, see “Launching and debugging a program on a remote
computer” on page 9-2. In this case, you run JBuilder’s Debug Server
on the remote computer.

• Attach to a program already running on the remote computer and
debug it using JBuilder on the client computer. For more information,
see “Debugging a program already running on the remote computer”
on page 9-6. In this case, you don’t need to run the Debug Server.

Note Both the client and remote computer must have JDK 1.2 or higher installed
(the JDK must support the JPDA debugging API). The JDK versions on the

9-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

L a u n c h i n g a n d d e b u g g i n g a p r o g r a m o n a r e m o t e c o m p u t e r

two computers do not need to match. Note that when you install JBuilder,
JDK 1.4 is automatically installed in the <jbuilder>/jdk1.4 directory.

You can also debug local code that is running in a separate process on the
same computer JBuilder is installed on. To do this, start the process in
debug mode and attach JBuilder to it. For more information, see
“Debugging local code running in a separate process” on page 9-9.

Additionally, you can set cross-process breakpoints, which is ideal for
debugging client/server applications. For more information, see
“Debugging with cross-process breakpoints” on page 9-10.

For any type of remote debugging, you need to debug through a debug
configuration. For more information on run and debug configurations, see
“Setting runtime configurations” on page 7-6 and “Setting debug
configuration options” on page 8-68.

Launching and debugging a program on a remote computer
This section explains how to launch a program on a remote computer and
debug it using JBuilder on the client computer. Briefly, you

1 Install the Debug Server on the remote computer and run it.

2 Either compile the application on the remote computer or copy the
application’s .class files to the remote computer.

3 Use JBuilder on the client computer to launch and debug the
application on the remote computer.

Important The source files for the application you are debugging must be available
on the client computer. The compiled .class files must be available on the
remote computer. They must match. Otherwise, unpredictable results
may occur, including incorrect errors being generated or the debugger
stopping on the wrong source code line. Every time you modify the source
code, be sure to update .class files on the remote computer.

First, install and run the Debug Server on the remote computer. If JBuilder
is already installed on the remote computer, you can start with Step 4
below.

1 Copy the debugserver.jar file (located in the <jbuilder>/remote directory)
to the remote computer. Note the directory location you copy it to as it
will be needed in later steps.

2 Copy the Debug Server shell script, DebugServer (Unix), or batch file,
DebugServer.bat (Windows), to the same directory on the remote
computer.

3 Make sure that JDK 1.2.2 or higher is installed on the remote computer.

R e m o t e d e b u g g i n g 9-3

L a u n c h i n g a n d d e b u g g i n g a p r o g r a m o n a r e m o t e c o m p u t e r

4 Go to the directory on the remote computer where the Debug Server
files are installed. Run DebugServer to customize environment variables
for the remote Debug Server.

For Unix systems, use the following command:

./DebugServer <debugserver.jar_dir> <jdk_home_dir> [-port portnumber]
 [-timeout milliseconds]

For Windows systems, use:

DebugServer <debugserver.jar_dir> <jdk_home_dir> [-port portnumber]
 [-timeout milliseconds]

where:

• debugserver.jar_dir - The directory on the remote computer where
the Debug Server JAR file is located. On Windows systems, the drive
letter is required.

• jdk_home_dir - The home directory on the remote computer of the JDK
installation. On Windows systems, the drive letter is required.

• -port - Optional parameter that launches the debug server on a port
different from the default, 18699. Change this value only if the
default value is in use. Valid values are from 1025 to 65535. This
value must match the value entered into the Port Number field on
the Debug page of the Runtime Configuration Properties dialog box
(on the client computer). See Step 6 below.

• -timeout - Optional parameter that sets the number of milliseconds to
try to connect the remote computer to the client computer. When this
number is reached, the process will stop. The default setting is 60,000
milliseconds.

An example of this command in a Windows environment is:

DebugServer d:\remote d:\jdk1.3 -port 1234 -timeout 20000

5 Press Enter to start the Debug Server.

When the Debug Server is loaded, JBuilder remote debugging
functionality in launch mode is enabled. Once the Debug Server is
running, you need to compile the application and copy the .class files to
the remote computer. (You can also compile the application remotely.)
Then, you use JBuilder, running on the client computer, to launch and
debug the program on the remote computer.

1 Compile the application. You can compile the application using
JBuilder on the client computer, then copy or use File Transfer Protocol
(FTP) to put .class files on the remote computer. You can also compile
the application directly on the remote computer using the -g option
when calling the javac compiler. (This tells the compiler to add debug
information to the compiled file.)

2 Open JBuilder on the client computer.

9-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

L a u n c h i n g a n d d e b u g g i n g a p r o g r a m o n a r e m o t e c o m p u t e r

3 Open the project for the application to debug.

4 Create a debug configuration (it can be part of an existing runtime
configuration or a new configuration):

a Choose Run|Configurations. To create a new configuration, click the
New button. To edit a configuration, choose it and click Edit.

b For a new configuration, enter a name in the Configuration Name
field.

c Set the Build Target to None.

d Select the Debug tab.

5 Select the Enable Remote Debugging check box. Select the Launch
option.

6 Fill in the following fields:

• Host Name - The name of the remote computer. localhost is the
default value. You may need to check the network settings on the
remote computer to find the host name.

• Port Number - The port number for the remote computer you are
communicating with. Use the default port number, 18699. Change
this value only if the default value is in use. Valid values are from

R e m o t e d e b u g g i n g 9-5

L a u n c h i n g a n d d e b u g g i n g a p r o g r a m o n a r e m o t e c o m p u t e r

1024 to 65535. This value must match the -port parameter used to
launch the Debug Server on the remote computer. See Step 4 in the
previous section.

• Remote Classpath - The classpath where the compiled .class files for
the application that you are remotely debugging can be found. This
field works like other classpath fields - if the classes are in a package,
specify the root of the package and not the directory containing the
classes. On Windows systems, specify the drive letter if other than
C:. This remote classpath only applies to this debugging session.

• Remote Working Directory - The working directory on the remote
computer. On Windows systems, specify the drive letter if other than
C:. This remote working directory only applies to this debugging
session.

Warning The working directory is not supported in JDK 1.2.2. If your remote
computer is running JDK 1.2.2 and you enter a remote working
directory, the debugger will display a warning in the Console
output, input, and errors view.

• Transport - The transport type: Either dt_shmem (shared memory
transport - not available on Unix systems) or dt_socket (socket
transport). For more information on transport methods, see “JPDA:
Connection and Invocation Details - Transports” at http://
java.sun.com/products/jpda/doc/conninv.html#Transports.

7 Click OK two times to close the Runtime Configuration Properties and
Project Properties dialog boxes.

8 Start the debugging session by choosing one of the following options:

Once you start the debugger, the application you want to debug (based
on the Remote Classpath setting) is launched on the remote computer.
The debugger is displayed in JBuilder running on the client computer;
however, you are debugging the .class files running on the remote
computer.

Note If the application is already running on the remote computer, the
Debug Server will launch a new instance of it. (To debug an

Command Shortcut Description

Run|Debug
Project

Shift + F9 Starts the program in the debugger using the
default or selected configuration. Either runs
the program to completion or suspends
execution at the first line of code where user
input is required, or at a breakpoint.

Run|Step Over F8 Suspends execution at the first line of
executable code.

Run|Step Into F7 Suspends execution at the first line of
executable code.

9-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e b u g g i n g a p r o g r a m a l r e a d y r u n n i n g o n t h e r e m o t e c o m p u t e r

already-running application, see “Debugging a program already
running on the remote computer” on page 9-6.)

9 To terminate the application on the remote computer, stop the process
in JBuilder. To close the Debug Server on the remote computer, choose
the Debug Server’s File|Exit command.

Debugging a program already running on the remote computer
This section explains how to attach to a program that is already running
on a remote computer and debug it using JBuilder on the client computer.
To do so, you will:

1 Run the application with VM debug options on the remote computer.

2 Use JBuilder on the client computer to attach to and debug the running
application.

Important The source files for the application you are debugging must be available
on the client computer. The compiled .class files must be available on the
remote computer. They must match. Otherwise, unpredictable results
may occur, including incorrect errors being generated or the debugger
stopping on the wrong source code line. Every time you modify the source
code, be sure to update the .class files on the remote computer.

For a tutorial that walks through attaching to an already running
program, see Chapter 19, “Tutorial: Remote debugging.”

To start a program on the remote computer and attach to it,

1 Compile the application on the remote computer. You can also compile
the application in JBuilder on the client computer, then copy or use File
Transfer Protocol (FTP) to put .class files on the remote computer.

2 Run the application on the remote computer, using the following VM
options.

• If JBuilder is installed on the remote computer, you can run your
program from within JBuilder. Open the project, then edit the
runtime configuration (Run|Configurations|Edit). Enter the
following parameters into the VM Parameters field:

-Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=y

R e m o t e d e b u g g i n g 9-7

D e b u g g i n g a p r o g r a m a l r e a d y r u n n i n g o n t h e r e m o t e c o m p u t e r

• If you don’t have JBuilder on the remote computer, you need to run
your program from the command line. Add the following VM
options to the Java command line:

-Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=y

The address and suspend parameters are optional. They follow the
server parameter and are separated by a comma. No spaces are
allowed between the parameters.

• The address parameter, based on the selected transport, holds the
port number/address through which the debugger communicates
with the remote computer. This parameter makes configuration
easier - you don’t need to continually modify the Address field on
the Debug page of the Runtime Properties dialog box. If the
Transport Type is set to dt_socket, the address parameter holds the
port number. If it’s set to dt_shmem, this parameter is set to the
unique address name. If you’re using XP, do not use 5000 for the
address parameter. This address is reserved for the Universal Plug
& Play.

• The suspend parameter indicates whether the program is
suspended immediately when it is started. You can turn off this
setting by specifying suspend=n. (If suspend=n and no breakpoints
are set, the program will run to completion without stopping
when you start it.)

Note To run the application with JDK 1.2x or 1.3x, use the java executable
from the bin directory of your JDK installation, not the java.exe in the
jre/bin directory. This allows the Java VM to load the debugger file
(libjdwp.so in Unix; jdwp.dll in Windows), which is necessary for
debugging. (This does not apply to JDK 1.4x.)

3 Open JBuilder on the client computer.

4 Open the project for the application already running on the remote
computer.

5 Create a debug configuration (it can be part of an existing runtime
configuration or a new configuration):

a Choose Run|Configurations. To create a new configuration, click the
New button. To edit a configuration, choose it and click Edit.

b For a new configuration, enter a name in the Configuration Name
field.

c Set the Build Target to None.

9-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e b u g g i n g a p r o g r a m a l r e a d y r u n n i n g o n t h e r e m o t e c o m p u t e r

d Select the Debug tab.

6 Select the Enable Remote Debugging checkbox. Select the Attach option.

7 Fill in the following fields:

• Host Name - The name of the remote computer. localhost is the
default. You may need to check the network settings on the remote
computer to find the host name.

• Transport - The transport method options:

• Type: Either dt_socket (socket transport) or dt_shmem (shared
memory transport - not available on Unix systems). For more
information on transport methods, see “JPDA: Connection and
Invocation Details - Transports.” at http://java.sun.com/products/
jpda/doc/conninv.html#Transports.

• Address:

• If the Transport Type is set to dt_socket, this parameter holds the
port number for the remote computer you are communicating
with. Use the default port number, 3999. Change this value only
if the default value is in use. This value must match the address

R e m o t e d e b u g g i n g 9-9

D e b u g g i n g a p r o g r a m a l r e a d y r u n n i n g o n t h e r e m o t e c o m p u t e r

parameter to the Java VM that starts the program on the remote
computer. See Step 2 earlier in this section.

Important If you are running Windows XP, do not use 5000 as the port
number/address through which the debugger communicates
with a remote computer. XP reserves this port for the Universal
Plug & Play.

• If dt_shmem is selected as the Transport Type, set the address
parameter to the unique name for the remote computer you are
communicating with. The default is javadebug.

8 Click OK two times to close the Runtime Configuration Properties and
Project Properties dialog boxes.

9 Choose either Run|Step Over or Run|Step Into to start the debugger.

10 If the suspend parameter for the VM on the remote computer is set to y
(see Step 2 earlier in this section), click the Resume Program button on
the debugger toolbar to proceed with debugging.

11 To terminate the application, close the application on the remote
computer.

12 To detach from the remote computer, stop the process in JBuilder.

Note To launch and debug an application on the remote computer, see
“Launching and debugging a program on a remote computer” on
page 9-2.

Debugging local code running in a separate process

To debug local code that is running in a separate process on the same
computer JBuilder is installed on, follow the instructions above, starting
with Step 2. Use the following settings for the Attach options on the
Debug page of the Runtime Configuration Properties dialog box:

• Host Name

Set to the default, localhost.

• Transport Type

Set to dt_socket (socket transport) or dt_shmem (shared memory
transport - not available on Unix systems).

• Transport Address

If the Transport Type is dt_socket, set to 3999. If the Transport Type is
dt_shmem, set to javadebug.

9-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e b u g g i n g w i t h c r o s s - p r o c e s s b r e a k p o i n t s

Debugging with cross-process breakpoints
A cross-process breakpoint causes the debugger to stop when you step
into any method or the specified method in the specified class in a
separate process. This allows you to step into a server process from a
client process, rather than having to set breakpoints on the client side and
on the server side. You will usually set a line breakpoint on the client side
and a cross-process breakpoint on the server side. For a tutorial that
demonstrates cross-process stepping, see Chapter 19, “Tutorial: Remote
debugging.”

To activate a cross-process breakpoint set on a server process,

1 Start the server process on the remote computer in debug mode. See
Step 2 in “Debugging a program already running on the remote
computer” on page 9-6.

2 On the client computer, from within JBuilder, attach to the server
already running on the remote computer. See Steps 4 - 10 in
“Debugging a program already running on the remote computer” on
page 9-6.

3 Set a line breakpoint in the client code and start debugging the client.
At the breakpoint, step into the server code. Do not use Step Over.
Stepping over will not stop at the cross-process breakpoint.

To set a cross-process breakpoint, use the Add Cross-Process Breakpoint
dialog box. To open the Add Cross-Process Breakpoint dialog box, do one
of the following:

• Before or during a debugging session, select Run|Add Breakpoint and
choose Add Cross Process Breakpoint.

• When you’re in a debugging session, click the down-facing arrow to the
right of the Add Breakpoint button on the debugger toolbar and choose
Add Cross-Process Breakpoint.

• When you’re in a debugging session, right-click an empty area of the
Data and code breakpoints view and choose Add Cross-Process
Breakpoint.

R e m o t e d e b u g g i n g 9-11

D e b u g g i n g w i t h c r o s s - p r o c e s s b r e a k p o i n t s

The Add Cross-Process Breakpoint dialog box is displayed.

To set a cross-process breakpoint,

1 In the Class Name field, enter the name of the server-side class that
contains the method you want the debugger to stop on. Use the Browse
button to browse to the class.

2 In the Method field, enter the name of the method you want the
debugger to stop on. Use the Browse button to display the Select
Method dialog box where you can browse through the methods
available in the selected class. The method name is not required. If you
do not specify the method name, the debugger stops at all method calls
in the specified class.

Note You cannot select a method if the selected class contains syntax or
compiler errors.

3 In the Method Arguments field, enter a comma-delimited list of
method arguments. The debugger will stop when the method name
and argument list match. This is useful for overloaded methods.

• If you don’t specify any arguments, the debugger stops at all
methods with the specified method name.

• If you select a method name from the Select Method dialog box, the
Methods Argument field is automatically filled in.

4 Choose the Actions for the debugger. The debugger can stop execution
at the breakpoint, display a message, or evaluate an expression. For
more information, see “Setting breakpoint actions” on page 8-51.

5 In the Condition field, set the condition, if one exists, for this
breakpoint. For more information, see “Creating conditional
breakpoints” on page 8-52.

9-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e b u g g i n g w i t h c r o s s - p r o c e s s b r e a k p o i n t s

6 In the Pass Count field, set the number of times this breakpoint must be
passed in order for the breakpoint to be activated. For more
information, see “Using pass count breakpoints” on page 8-53.

7 Click OK to close the dialog box.

8 Set a line breakpoint in the client on the method that calls the
cross-process breakpoint.

9 When you stop at the line breakpoint, click the Step Into button on the
debugger toolbar to step into the server-side breakpointed method. (If
you use Step Over, the debugger will not stop.)

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-1

C h a p t e r

10
Chapter10Creating JavaBeans with

BeansExpress
This is a feature of

JBuilder SE and
Enterprise

BeansExpress is the fastest way to create JavaBeans. It consists of a set of
wizards, visual designers, and code samples that help you build
JavaBeans rapidly and easily. Once you have a JavaBean, you can use
BeansExpress to make changes to it. Or you can take an existing Java class
and turn it into a JavaBean.

What is a JavaBean?
A JavaBean is a collection of one or more Java classes, often bundled into a
single JAR (Java Archive) file, that serves as a self-contained, reusable
component. A JavaBean can be a discrete component used in building a
user interface, or a non-UI component such as a data module or
computation engine.

At its simplest, a JavaBean is a public Java class that has a constructor with
no parameters. JavaBeans usually have properties, methods, and events
that follow certain naming conventions (also known as design patterns).

Why build JavaBeans?
Like other types of components, JavaBeans are reusable pieces of code that
can be updated with minimal impact on the testing of the program they

10-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

G e n e r a t i n g a b e a n c l a s s

become a part of. JavaBeans have some unique advantages over other
components, however:

• They are pure Java, cross-platform components.

• You can install them on the JBuilder component palette and use them in
the construction of your program, or they can be used in other
application builder tools for Java.

• They can be deployed in JAR files.

Generating a bean class
To begin creating a JavaBean using BeansExpress,

1 Choose File|New Project and create a new project with the Project
wizard.

2 Choose File|New to display the object gallery.

3 Click the General tab and double-click the JavaBean icon to open the
JavaBean wizard.

4 Specify the package you want the bean to be part of in the first text
field. By default, this will be the name of your current project.

5 Give your bean a name in the second text field.

6 Choose a class to extend in the Base Class field.

Either use the drop-down list, or click the adjacent button to display the
Package browser and use it to specify any existing Java class you want.

7 Choose the remaining options you want; none of them are required:

a Check Allow Only JavaBeans if you want JBuilder to warn you if
you try to extend a Java class that is not a valid JavaBean.

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-3

G e n e r a t i n g a b e a n c l a s s

b Check Public if you want class to be public.

c Check Generate Main Method if you want JBuilder to place the
main() method within your bean that makes it runnable.

d Check Generate Header Comments if you want JavaDoc header
comments (Title, Description, Author, and so on) added to the top of
your class file.

e Check Generate Default Constructor if you want JBuilder to create a
parameterless constructor.

f Check Generate Sample Property if you want JBuilder to add a
property called sample to your bean. You might want this for your
first bean to see how JBuilder generates the required code for a
property. You can remove this property later, or make it an actual
property that your bean can use.

8 Choose OK to close the JavaBean wizard.

JBuilder creates a JavaBean with the name you specified, places it in your
current project, and displays the source code it generated. This is the code
JBuilder generates for the settings shown:

package myjavabean;

import java.awt.*;
import javax.swing.*;

public class BeanieBaby extends JPanel {
 BorderLayout borderLayout1 = new BorderLayout();

 public BeanieBaby() {
 try {
 jbInit();
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 private void jbInit() throws Exception {
 this.setLayout(borderLayout1);
 }
}

If you examine the code JBuilder generated, you’ll see that

• JBuilder named the bean as you specified and extended the designated
class; the class is declared as public.

• The class has a parameterless constructor.

Even in this rudimentary state, your class is a valid JavaBean.

10-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e s i g n i n g t h e u s e r i n t e r f a c e o f y o u r b e a n

Designing the user interface of your bean
Not all JavaBeans have a user interface, but if yours does, you can use
JBuilder’s UI designer to create it.

To create a user interface for your bean,

1 Select the bean file JBuilder created for you in the project pane.

2 Click the Design tab to display the UI designer.

3 Use the UI designer to build the user interface for your bean.

For information on creating a user interface, see Designing Applications
with JBuilder.

Adding properties to your bean
Properties define the attributes your bean has. For example, the
backgroundColor property describes the color of the background.

JavaBeans properties usually have both a read and a write access method,
also known as a getter and a setter, respectively. A getter method returns
the current value of the property; a setter method sets the property to a
new value.

To add a property to your bean,

1 Select your component in the project pane and click the Bean tab to
display the BeansExpress designers.

2 Click the Properties tab to display the Properties designer.

3 Choose the Add Property button. The New Property dialog box
appears.

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-5

A d d i n g p r o p e r t i e s t o y o u r b e a n

4 Specify the name of the property in the Property Name box.

5 Specify a type in the Type box.

You can type in one of the Java types or use the Package browser to
select any object type, including other JavaBeans.

6 Leave both Getter and Setter check boxes checked if you want JBuilder
to generate the methods to both get and set the property value.

If you want to make a property read-only, uncheck the Setter check
box.

7 Choose OK.

JBuilder generates the necessary code for the property and adds the
property to the Properties designer grid. You can see the read and write
access methods added to the component tree for your bean. If you click
the Source tab, you can see the code JBuilder generated.

Here is the New Property dialog box with all the required fields filled in:

The Display Name and Short Description are filled in automatically with
default values. This is the resulting source code:

package myjavabean;

import java.awt.*;
import javax.swing.JPanel;

public class BeanieBaby extends JPanel {
 BorderLayout borderLayout1 = new BorderLayout();
 private float price; // Added a private price field

10-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A d d i n g p r o p e r t i e s t o y o u r b e a n

 public BeanieBaby() {
 try {
 jbInit();
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 private void jbInit() throws Exception {
 this.setLayout(borderLayout1);
 }

 public void setPrice(float price) { // Added a method to change the price
 // value
 this.price = price;;
 }

 public float getPrice() { // Added a method to obtain the price
 // value
 return price;
 }
}

JBuilder added a private price field to the BeanieBaby class. The price field
holds the value of the property. Usually a property field should be
declared as private so that only the getter and setter methods can access
the field.

It also generated a setPrice() method that can change the value of the new
field, and it generated a getPrice() method that can get the current value
of the field.

When your bean is installed on JBuilder’s component palette and users
drop the bean on the UI designer, the price property will appear in the
Inspector so that users can modify its value. All the code to get and set the
price property is in place.

Modifying a property

Once you’ve added a property to your bean, you can modify it at any time
with the Properties designer.

To modify a property,

1 Select your bean using the project pane.

2 Click the Bean tab to display the BeansExpress designers.

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-7

A d d i n g p r o p e r t i e s t o y o u r b e a n

3 Click the Properties tab.

4 Select any of the fields in the Properties designer grid and make the
changes you want.

For example, you can change the type of the property by entering
another type.

JBuilder reflects the changes you make in the Properties designer in the
source code of your bean. You can also make changes directly in the
source code and the BeansExpress designers will reflect the changes if the
changes have been made correctly.

Removing a property

To remove a property from your bean,

1 Select the bean that contains the property in the project pane.

2 Click the Bean tab to display the BeansExpress designers.

3 Click the Properties tab.

4 Select the property you want removed in the Properties designer grid.

5 Click Remove Property.

The property field and its access methods are removed from the source
code.

Adding bound and constrained properties

BeansExpress can generate the necessary code to create bound and
constrained properties.

To add a bound or constrained property,

1 From the Properties designer, click the Add Property button to display
the New Property dialog box.

2 Specify a property name and type.

3 Use the Binding drop-down list to specify the property as bound or
constrained.

4 Choose OK.

10-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a B e a n I n f o c l a s s

If the property you added is a bound property, JBuilder adds the private
property field to the class and generates its read and write methods. It also
instantiates an instance of the PropertyChangeSupport class. For example,
here is the code added for a bound property called allTiedUp:

public class BeanieBaby extends JPanel {
...
private String allTiedUp;
private transient PropertyChangeSupport propertyChangeListeners = new
 PropertyChangeSupport(this);
...
public void setAllTiedUp(String allTiedUp) {
 String oldAllTiedUp = this.allTiedUp;
 this.allTiedUp = allTiedUp;
 propertyChangeListeners.firePropertyChange("allTiedUp", oldAllTiedUp,
 allTiedUp);
}
public String getAllTiedUp() {
 return allTiedUp;
}

Note that the setAllTiedUp() method includes the code to notify all
listening components of changes in the property value.

JBuilder also generates the event-listener registration methods that are
called by listening components that want to be notified when the property
value of allTiedUp changes:

public synchronized void removePropertyChangeListener(PropertyChangeListener l) {
 super.removePropertyChangeListener(l);
 propertyChangeListeners.removePropertyChangeListener(l);
}
public synchronized void addPropertyChangeListener(PropertyChangeListener l) {
 super.addPropertyChangeListener(l);
 propertyChangeListeners.addPropertyChangeListener(l);
}

The code JBuilder generates for a constrained property is similar except
the listeners have the opportunity to reject the change in property value.

Creating a BeanInfo class
You can customize how your bean appears in visual tools such as JBuilder
using a BeanInfo class. For example, you might want to hide a few
properties so they don’t appear in JBuilder’s Inspector. Such properties
can still be accessed programmatically, but the user can’t change their
values at design time.

BeanInfo classes are optional. You can use BeansExpress to generate a
BeanInfo class for you to customize your bean. If you are going to use a
BeanInfo class, you should specify more detailed information for each
new property you add to your bean.

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-9

C r e a t i n g a B e a n I n f o c l a s s

Specifying BeanInfo data for a property

You can specify BeanInfo data for a property in the New Property dialog
box:

To hide a property so it does not appear in visual design tools such as
JBuilder’s Inspector, make sure the Expose Through BeanInfo option is
unchecked.

To provide a localized display name for this property, enter the property
name you want to use in the Display Name field.

To provide a short description of this property, enter the description in the
Short Description field. JBuilder displays this text as a tool tip in the
Inspector for this property.

If you have created a property editor that can edit this field, specify the
property editor in the Editor field. The Editor field displays all editors in
scope that match the given property type.

Working with the BeanInfo designer

The BeanInfo designer provides a way to modify BeanInfo data for a
property, lets you specify the icon(s) you want to use to represent your
bean in an application builder such as JBuilder, and generates the
BeanInfo class for you.

10-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a B e a n I n f o c l a s s

Click the BeanInfo tab of the BeansExpress designer to open the BeanInfo
designer.

The BeanInfo designer displays all the properties you have added to your
bean. If you change your mind about the BeanInfo data you entered for a
property, you can edit one or more of these fields in the grid. Only the
name of the property can’t be changed.

To provide an image to use as an icon to represent your bean, specify one
or more images in the Icons panel.

You can specify different icons to use for both color and mono
environments and for different screen resolutions. Fill in the boxes that
meet your needs.

If the superclass of your bean has a BeanInfo class and you want its
BeanInfo data exposed in the BeanInfo class for your bean, check the
Expose Superclass BeanInfo check box. The generated code will include a
getAdditionalBeanInfo() method that returns the BeanInfo data of the class
your bean extends.

To generate a BeanInfo class for your bean, click the Generate Bean Info
button.

JBuilder creates a BeanInfo class for you. You’ll see it appear in the project
pane. To see the generated code, select the new BeanInfo class in the
project pane and the source code appears.

Modifying a BeanInfo class

You can change the BeanInfo class for your bean with BeansExpress.

1 Select your bean in the project pane.

2 Click the Bean tab to display the BeansExpress designers.

3 Click the BeanInfo tab to display the BeanInfo designer.

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-11

A d d i n g e v e n t s t o y o u r b e a n

4 Make your changes in the grid.

5 Click the Generate Bean Info button again.

You are warned that you are about to overwrite the existing BeanInfo
class. If you choose OK, the class is overwritten with the new BeanInfo
data.

Adding events to your bean
A JavaBean can

• Generate (or fire) events, sending an event object to a listening object.

• Listen for events and respond to them when they occur.

BeansExpress can generate the code that makes your bean capable of
doing one or both of these things.

Firing events

To make your bean capable of sending an event object to listening
components,

1 Select your bean in the project pane.

2 Click the Bean tab to display the BeansExpress designers.

3 Click the Events tab to display the Events designer.

4 Select the events you want your bean capable of firing in the left
window.

The Events designer adds the event-registration methods to your bean.
These methods are called by components that want to be notified when

10-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A d d i n g e v e n t s t o y o u r b e a n

these types of events occur. For example, if you select Key events, these
methods are added to your bean:

package myjavabean;

import java.io.*;
import java.beans.*;
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
import java.util.*;

public class BeanieBaby extends JPanel {
 BorderLayout borderLayout1 = new BorderLayout();
 private float price;
 private transient Vector keyListeners;

 public BeanieBaby() {
 try {
 jbInit();
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 private void jbInit() throws Exception {
 this.setLayout(borderLayout1);
 }

 public void setPrice(float price) {
 this.price = price;
 }

 public float getPrice() {
 return price;
 }

 public synchronized void removeKeyListener(KeyListener l) {
 super.removeKeyListener(l);
 if(keyListeners != null && keyListeners.contains(l)) {
 Vector v = (Vector) keyListeners.clone();
 v.removeElement(l);
 keyListeners = v;
 }
 }

 public synchronized void addKeyListener(KeyListener l) {
 super.addKeyListener(l);
 Vector v = keyListeners == null ? new Vector(2) : (Vector)
 keyListeners.clone();
 if(!v.contains(l)) {
 v.addElement(l);
 keyListeners = v;
 }
 }
...

}

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-13

A d d i n g e v e n t s t o y o u r b e a n

When a component wants to be notified of a key event occurring in your
bean, it calls the addKeyListener() method of your bean and that
component is added as an element in KeyListeners. When a key event
occurs in your bean, all listening components stored in KeyListeners are
notified.

The class also generates fire<event> methods that send an event to all
registered listeners. One such event is generated for each method in the
Listener’s interface. For example, the KeyListener interface has three
methods: keyTyped(), keyPressed(), and keyReleased(). So the Events
designer adds these three fire<event> methods to your bean class:

 protected void fireKeyPressed(KeyEvent e) {
 if(keyListeners != null) {
 Vector listeners = keyListeners;
 int count = listeners.size();
 for (int i = 0; i < count; i++) {
 ((KeyListener) listeners.elementAt(i)).keyPressed(e);
 }
 }
 }

 protected void fireKeyReleased(KeyEvent e) {
 if(keyListeners != null) {
 Vector listeners = keyListeners;
 int count = listeners.size();
 for (int i = 0; i < count; i++) {
 ((KeyListener) listeners.elementAt(i)).keyReleased(e);
 }
 }
 }

 protected void fireKeyTyped(KeyEvent e) {
 if(keyListeners != null) {
 Vector listeners = keyListeners;
 int count = listeners.size();
 for (int i = 0; i < count; i++) {
 ((KeyListener) listeners.elementAt(i)).keyTyped(e);
 }
 }
 }
 }

Once you’ve made your bean capable of generating events, those events
will appear in JBuilder’s Inspector when the user drops your bean on the
UI designer.

10-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A d d i n g e v e n t s t o y o u r b e a n

Listening for events

You can also make your bean a listener for events that occur in other
components.

To make your bean a listener, select one of the event types to listen for in
the Events designer.

As soon as you check one of the event types, the Events designer
implements the associated listener interface in your bean. For example, if
you checked java.awt.event.KeyListener, the phrase implements KeyListener
is added to the declaration of your bean and the KeyPressed(),
KeyReleased(), and KeyTyped() methods are implemented with empty
bodies.

Here is a bean that includes the generated code to implement the
KeyListener interface:

package myBeans;

import java.awt.*;
import javax.swing.JPanel;
import java.beans.*;
import java.awt.event.*;

public class JellyBean extends JPanel implements KeyListener { // implements
 // KeyListener
 BorderLayout borderLayout1 = new BorderLayout();

 public JellyBean() {

 try {
 jbInit();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 void jbInit() throws Exception {
 this.setLayout (borderLayout1);
 }

 public void keyTyped(KeyEvent e) { // Adds new method
 }

 public void keyPressed(KeyEvent e) { // Adds new method
 }

 public void keyReleased(KeyEvent e) { // Adds new method
 }
}

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-15

A d d i n g e v e n t s t o y o u r b e a n

If your bean is registered with another component as a listener (by calling
the event-registration method of the component), the source component
calls one of the methods in the listening component when that type of
event occurs. For example, if a KeyPressed event occurs in the source
component, the KeyPressed() method is called in the listening component.
Therefore, if you want your component to respond in some way to such
an event, write the code that responds within the body of the KeyPressed()
method, for example.

Creating a custom event set

Occasionally you might want to create a custom event set to describe other
events that can occur in your bean. For example, if your bean implements
a password dialog box, you might want the bean to fire an event when a
user successfully enters the password. You also might want the bean to
fire another event when the user enters the wrong password. Using
BeansExpress, you can create the custom event set that handles these
situations.

To create a custom event set,

1 Select a bean in the project pane.

2 Click the Bean tab to display the BeansExpress designers.

3 Click the Events tab.

4 Click the Create Custom Event button.

The New Event Set dialog box appears.

5 Specify the name of the event set in the Name Of New Event Set box.

The names of the event object and the event listener are generated from
the name of the event set; they are displayed in the dialog box.

6 Select the dataChanged item and change it to the name of your first event.

10-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A d d i n g e v e n t s t o y o u r b e a n

7 To add more events, choose the Add New Event button for each event
and change the added item to the names of your remaining events:

8 Choose OK.

The new event set is added to the list of event types that can be fired in the
Events designer.

JBuilder generates the event object class for the event set:

package myBeans;

import java.util.*;

public class PasswordEvent extends EventObject {
 public PasswordEvent(Object source) {
 super(source);
 }
}

JBuilder also generates the Listener interface for the event set:

package myBeans;

import java.util.*;

public interface PasswordListener extends EventListener {
 public void passwordSuccessful(PasswordEvent e);
 public void passwordFailed(PasswordEvent e);
}

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-17

C r e a t i n g a p r o p e r t y e d i t o r

Creating a property editor
A property editor is an editor for changing property values at design time.
You can see several different types of property editors in JBuilder’s
Inspector. For example, for some properties, you simply type in a value in
the Inspector, and by so doing, change the value of the property. This is
the simplest type of property editor. For other properties, you use a choice
menu (drop-down list) to display all the possible values and you select the
value you want from that list. Colors and fonts have property editors that
are actually dialog boxes you can use to set their values.

When you create your own JavaBeans, you might create new property
classes and want to have editors capable of editing their values.
BeansExpress can help you create property editors that display a list of
choices.

To begin creating a property editor for a property,

1 Click the Property Editors tab in BeansExpress.

2 Click the Create Custom Editor button.

The New Property Editor dialog box appears.

3 Specify the name of your property editor in the Editor Name box. Give
the property editor the same name as the property it will edit with the
word Editor appended. For example, if the property name is
favoriteFoods, name the editor FavoriteFoodsEditor.

4 Select the type of editor you want from the Editor Type drop-down list.

The appearance of the New Property dialog box changes depending on
which type of editor you selected. The next four sections describe how
to create a property editor of the four different types.

Creating a String List editor

A String List is a simple list of Strings. It appears in the Inspector as a
drop-down list containing the strings you specify. When the user uses the
list to select an entry, the property being edited is set to the selected value.

To add items to a String List editor,

1 Choose Add Entry for each item you want to appear in the list.

2 In each entry, enter the string you want to appear.

10-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a p r o p e r t y e d i t o r

This is how the resulting New Property Editor dialog box might look:

3 Choose OK, and a new property editor class is created.

To see the generated code,

1 Select your property editor class in the project pane.

2 Click the Source tab.

Creating a String Tag List editor

A property editor that is a String Tag List also presents a list of strings to
the user in the Inspector. When the user selects one of the items, the
specified Java initialization string is used to set the property. A Java
initialization string is the string JBuilder uses in the source code it
generates for the property.

To add items to a String Tag List editor,

1 Choose Add Entry for each item you want to appear in the list.

2 In each entry, enter the string you want to appear and its associated
Java initialization string.

If you want to include a string in your list of Java initialization strings,
put quotation marks (“) before and after the string, as if you were
entering it in source code.

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-19

C r e a t i n g a p r o p e r t y e d i t o r

Here is an example of how the dialog box might look:

3 Choose OK, and a new property editor class is created.

To see the generated code,

1 Select your property editor class in the project pane.

2 Click the Source tab.

Creating an Integer Tag List editor

An Integer Tag List property editor can be used to edit integer properties.
It presents a list of strings to the user in the Inspector, and when the user
selects one of the items, the specified Java initialization string is used to set
the property.

To add items to an Integer Tag List editor,

1 Choose Add Entry for each item you want to appear in the list.

2 In each entry, enter the string you want to appear and its associated
integer value and Java initialization string.

If you want to include a string in your list of Java initialization strings,
put quotation marks (“) before and after the string, as if you were
entering it in source code.

10-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a p r o p e r t y e d i t o r

Here is an example of how the dialog box might look:

3 Choose OK, and a new property editor class is created.

To see the generated code,

1 Select your property editor class in the project pane.

2 Click the Source tab.

Creating a custom component property editor

You can also use your own custom component to edit the value of a
property. Selecting this choice generates a skeleton property editor that
uses the custom editor you specify to actually edit the property.

To specify a custom component property editor,

1 Enter a name for the editor class that will instantiate your custom
component in the Editor Name field of the New Property dialog box.

2 Select Custom Editor Component from the drop-down list.

3 Specify the name of your custom component as the value of the Custom
Component Editor field.

4 Check the Support paintValue() option if your custom editor paints
itself.

C r e a t i n g J a v a B e a n s w i t h B e a n s E x p r e s s 10-21

A d d i n g s u p p o r t f o r s e r i a l i z a t i o n

To see the generated code,

1 Select your property editor class in the project pane.

2 Click the Source tab.

Adding support for serialization
Serializing a bean saves its state as a sequence of bytes that can be sent
over a network or saved to a file. BeansExpress can add the support for
serialization to your class.

To add support for serialization,

1 Select your bean in the project pane.

2 Click the Bean tab to display the BeansExpress designers.

3 Click the General tab to display the General page.

4 Check the Support Serialization option.

BeansExpress modifies the class so that it implements the Serializable
interface. Two methods are added to the class: readObject() and
writeObject():

void writeObject(ObjectOutputStream oos) throws IOException {
 oos.defaultWriteObject();
}

void readObject(ObjectInputStream ois) throws ClassNotFoundException,
 IOException {
 ois.defaultReadObject();
 }
}

You must fill in these two methods to serialize and deserialize your bean.

Checking the validity of a JavaBean
When you’re finished with your bean, you can use BeanInsight to verify
that the component you created is a valid JavaBean component. If your
class fails as a JavaBean, BeanInsight reports why it failed. It identifies all
the properties, customizers, and property editors it finds for the class. It
also reports whether the property information is obtained through a
BeanInfo class or through introspection.

10-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

I n s t a l l i n g a b e a n o n t h e c o m p o n e n t p a l e t t e

To verify that your Java class is a JavaBean,

1 Choose Tools|BeanInsight to display BeanInsight:

2 Type in the name of the component you want examined or use the ...
button to specify the component. If the bean is already selected in the
project pane when BeanInsight appears, its name is displayed in
BeanInsight.

3 Click the Examine Bean button to begin the examination process.

BeanInsight reports a summary of its findings in the BeanInsight
Results section of the wizard.

4 To see complete details on BeanInsight’s findings, click the View
Details button.

5 Click the various tabs to see the full report.

Installing a bean on the component palette
Once you have built a valid JavaBean component, you are ready to install
it on the component palette using the Palette Properties dialog box. The
class files for your new component must be on your classpath.

To display the Palette Properties dialog box, choose Tools|Configure
Palette or right-click the component palette and choose Properties.

For information about installing components, click the Help button of the
Palette Properties dialog box or see “Adding a component to the
component palette” in Designing Applications with JBuilder.

V i s u a l i z i n g c o d e w i t h U M L 11-1

C h a p t e r

11
Chapter11Visualizing code with UML

This is a feature of
JBuilder Enterprise

UML, the Unified Modeling Language, is a standard notation for modeling
object-oriented systems. UML, at its simplest, is a language that
graphically describes a set of elements. At its most complex, it’s used to
specify, visualize, construct, and document not only software systems but
business models and non-software systems. Much like a blueprint for
constructing a building, UML provides a graphical representation of a
system design that can be essential for communication among team
members and to assure architectural soundness of the system.

Using UML for code visualization is a helpful tool for examining code,
analyzing application development, and communicating software design.
JBuilder uses UML diagrams for visualizing code and browsing classes
and packages. UML diagrams can help you quickly grasp the structure of
unknown code, recognize areas of over-complexity, and increase your
productivity by resolving problems more rapidly.

If you’re interested in learning more about UML, visit these web sites:

• Object Management Group at http://www.omg.org/

• Cetus UML links at http://www.cetus-links.org/oo_uml.html

• UML Central at http://www.embarcadero.com/support/uml_central.asp

• UML Resource Center at http://www.rational.com/uml/index.jsp

• UML Zone at http://www.devx.com/uml/

• UML Dictionary at http://softdocwiz.com/UML.htm

For a tutorial on using JBuilder’s UML browser, see Chapter 20, “Tutorial:
Visualizing code with the UML browser.”

11-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J a v a a n d U M L

Java and UML
Because Java and UML are object oriented and platform independent,
they work well together. UML, a valuable tool in understanding Java and
the complex relationships between classes and packages, assists Java
developers in understanding not just a single class but the entire package.
In particular, UML can help Java developers who are new to a team get up
to speed more quickly on the structure and design of the software system.

Java and UML terms

Because UML is designed to describe a wide range of different scenarios,
it uses broad terms to describe different relationships. Listed in the
following table are definitions of Java-specific terms and the
corresponding UML terms. In some cases, the terms are identical.
Throughout this documentation, Java terms are used.

Table 11.1 Java and UML terms

Java term Java definition UML term UML definition

Inheritance A mechanism that allows a class or
interface to be defined as a
specialization of another more general
class or interface. For example, a
subclass (child) inherits its structure
and behavior, such as fields and
methods, from its superclass (parent).
Classes and interfaces that inherit from
a parent use the extends keyword.

Generalization
/Specialization

A specialized to generalized
relationship in which a specific
element incorporates the
structure and behavior of a more
general element.

Dependency A using relationship in which a change
to an independent object may affect
another dependent object.

Dependency A relationship where the
semantic characteristics of one
entity rely upon and constrain the
semantic characteristics of
another entity.

Association A specialized dependency where a
reference to another class is stored.

Relationship
(Association)

A structural relationship that
describes links between or among
objects.

Interface A group of constants and method
declarations that define the form of a
class but do not provide any
implementation of the methods. An
interface specifies what a class must do
but not how it gets done. Classes and
interfaces that implement the interface
use the implements keyword.

Realization/
Interface

A collection of operations used to
specify a service of a class or
component. States the behavior of
an abstraction without the
implementation of that behavior.

V i s u a l i z i n g c o d e w i t h U M L 11-3

J B u i l d e r a n d U M L

JBuilder and UML
JBuilder focuses on code visualization and UML diagramming specific to
the Java language, rather than replacing the many available UML design
tools. UML functionality in JBuilder allows you to visually browse
packages and classes to help you better design, understand, and
troubleshoot your application development process.

Two UML diagrams are available in JBuilder:

• Limited package dependency diagrams

• Combined class diagrams

JBuilder’s UML browser also provides additional features, such as
refactoring code, customizing the UML display, as well as viewing
Javadoc and source code.

Important In obfuscated code, JBuilder excludes private fields and members in a
class file.

See also

• “Customizing UML diagrams” on page 11-17

• Chapter 12, “Refactoring code symbols”

Method The implementation of an operation
which is defined by an interface or
class.

Operation An implementation of a service
that can be requested by an object
and can affect that object’s
behavior. Operations are usually
listed below the attributes in a
UML diagram.

Field An instance variable or data member of
an object.

Attribute A named property of a classifier,
such as a class or an interface, that
describes values that instances of
a property can hold.

Property Information about the current state of a
component. Properties can be thought
of as named attributes of a component
that a user or program can read (get) or
write (set). In a UML diagram, a
property exists when a field name
matches a method name which is
preceded by “is”, “set”, or “get”. For
example, a field named parameterRow is a
property if it has a method named
setParameterRow().

Table 11.1 Java and UML terms (continued)

Java term Java definition UML term UML definition

11-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r a n d U M L

Limited package dependency diagram

The package diagram is centered around a central package and shows only
the dependencies of that package. It does not show the dependencies
between the dependent packages. Dependencies and reverse
dependencies appear on the left side, the right side, or both sides of the
central package. Packages with reverse relationships are sorted to either
side, mixed relations in the middle, and the remainder below. Packages
with dependencies display the specific dependent classes within the
package, which can be used for navigation by double-clicking them in the
diagram. The current, central package is displayed in a bright green
background by default. All other packages have a darker green
background by default.

Figure 11.1 Package diagram

Although only the current package and imported packages are displayed
in the UML diagram, you can include references from the project library
classes. To include library references, set the Include References From
Project Library Class Files option on the General page of the Project
Properties dialog box (Project|Project Properties).

See also

• “Viewing package diagrams” on page 11-12

• “Including references from project libraries” on page 11-18

Combined class diagram

The combined class diagram for a Java source file or class file open in the
editor displays the class in the center of the diagram with associations on

V i s u a l i z i n g c o d e w i t h U M L 11-5

J B u i l d e r a n d U M L

the left and dependencies on the right. Extended classes (superclasses)
and extended interfaces (parent interfaces) appear on the top, while
extending and implementing classes appear on the bottom. Classes are
grouped according to package.

Grouped associations and dependencies are sorted as follows: reverse
associations are on the top left side of the central class and reverse
dependencies are on the top right; associations and dependencies with
mixed relations are on the middle left and middle right of the class; all
remaining associations and dependencies are on the lower left and lower
right of the class.

Figure 11.2 Class diagram

The UML class diagram displays the class in the center of the diagram in a
rectangle with a default yellow background. Surrounding the class is the
package with the package name in a tab at the top. The class itself is
divided into several sections, which are separated by horizontal lines, in
the following order:

• Class name at the top

• Fields and properties*

• Methods, getters*, and setters*

• Properties* at the bottom

*By default, properties are displayed in the bottom section of the class
diagram. The Display Properties Separately option is set on the UML page
of the IDE Options dialog box (Tools|IDE Options). If this option is

11-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r a n d U M L

turned off, properties are displayed in the appropriate sections with fields
and methods. See “Setting IDE Options” on page 11-19.

Figure 11.3 Class diagram with properties displayed separately

Note Icons indicate whether a field, method, or property is private, public, or
protected. See “Visibility icons” on page 11-9.

Figure 11.4 Class diagram without properties displayed separately

Although only the current package and imported packages are displayed
in the UML diagram, you can include references from the project library
classes. To include library references, set the Include References From
Project Library Class Files option on the General page of the Project
Properties dialog box (Project|Project Properties).

See also

• “Viewing class diagrams” on page 11-12

• “Including references from project libraries” on page 11-18

V i s u a l i z i n g c o d e w i t h U M L 11-7

J B u i l d e r a n d U M L

JBuilder UML diagrams defined

The following table lists definitions for folders in the structure pane, terms
in the diagrams, and the corresponding UML representation. For example,
dependencies appear in a Dependencies folder in the structure pane and
are represented in the UML diagram by a dashed line.

Table 11.2 UML diagram definitions

Diagram Definition Diagram Description Diagram Example

Extended
Classes

Classes whose attributes
(fields and properties) and
methods are inherited by
another class. Also called
superclass, parent class, or
base class.

A solid line with a large
triangle that points from the
subclass (child class) to the
superclass (parent class).
Displayed at the top of the
UML diagram.

Classes Structures that define
objects. A class definition
defines fields and methods.

Displayed in a rectangular
box with a default yellow
background with the name
at the top and fields,
methods, and properties
listed below it.

Abstract classes Classes that are superclasses
of another class but that
can’t be instantiated.

Displayed in italic font.

Extending
Classes

Classes that extend (inherit
from) the superclass. Also
called subclass or child class.

A solid line with a large
triangle that points from the
subclass to the superclass.
Displayed at the bottom of
the UML diagram.

Implementing
Classes

Classes that implement the
central interface.

A dashed line with a large
triangle which points from
the implementing class to
the inherited interface.
Displayed at the bottom of
the UML diagram.

Extended
Interfaces

Parent interfaces that are
inherited by a subinterface.

A solid line with a large
triangle that points from the
subinterface to the inherited
interface. Displayed at the
top of the UML diagram.

Interfaces Groups of constants and
method declarations that
define the form of a class but
do not provide any
implementation of the
methods. Interfaces allows
you to specify what a class
must do but not how it gets
done.

A rectangle with a default
orange background and the
interface name in italic font.

11-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r a n d U M L

Implemented
Interfaces

Interfaces that are
implemented by the central
class.

A dashed line with a large
triangle which points from
the implementing class to
the implemented interface.
Displayed at the top of the
UML diagram.

Dependencies/
Reverse
Dependencies

Using relationships in which
a change to the used object
may affect the using object.

A dashed line with an
arrowhead.

Associations/
Reverse
Associations

Specialized dependencies
where a reference to another
class is stored.

A solid line with an
arrowhead.

Packages Collections of related
classes.

A rectangle with a tab at the
top and the package name
in the tab or below it. The
current package has a bright
green background by
default. All other packages
have a darker green
background by default.

Methods Operations defined in a class
or interface.

Listed below members and
fields, including the return
type.

Abstract
methods

Methods that don’t have any
implementation.

Displayed in italic font.

Members/fields Instance variables or data
members of an object.

Listed below the class name,
including the return type.

Properties Properties exist when a
method name matching a
field name is preceded by
“is”, “get”, or “set”. For
example, a field name
parameterRow with a
getParameterRow() method is a
property.

Properties are displayed
separately in the bottom
section of the class diagram
if the Display Properties
Separately option is set on
the UML page of the IDE
Options dialog box (Tools|
IDE Options).

Static Having class scope. Static members, fields,
variables, and methods are
underlined in the UML
diagram.

Table 11.2 UML diagram definitions (continued)

Diagram Definition Diagram Description Diagram Example

V i s u a l i z i n g c o d e w i t h U M L 11-9

J B u i l d e r a n d U M L

Visibility icons
UML uses icons to represent the visibility of a class, such as public, private,
protected, and package. You can use JBuilder’s visibility icons or the
standard UML icons in your UML diagrams.

JBuilder’s visibility icons are the same icons used in the structure pane in
the source code. To use JBuilder’s icons in your UML diagrams, choose the
Use Visibility Icons option on the UML page of the IDE Options dialog
box (Tools|IDE Options). The Use Visibility Icons option is on by default.

Note For structure pane icon definitions, see “JBuilder structure pane and UML
icons” in Introducing JBuilder.

Figure 11.5 JBuilder’s visibility icons

UML uses more generic icons to represent the visibility of a class as
defined in the following table.

Table 11.3 UML visibility icons

UML icon Description

+ public

- private

protected

11-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

V i e w i n g U M L d i a g r a m s

To use the standard UML visibility icons in the UML diagram, uncheck
the Use Visibility Icons option on the UML page of the IDE Options dialog
box (Tools|IDE Options).

Viewing UML diagrams
JBuilder provides a UML browser for visualizing your code using UML
diagrams. The UML browser, available on the UML tab of the content
pane, displays package and class diagrams using standard UML. When
you choose the UML tab, JBuilder loads the class files to determine their
relationships, which the UML browser then uses to obtain the package
and class information for the UML diagrams.

For an up-to-date and accurate UML diagram, it’s always best to compile
before you choose the UML tab. The UML browser does display Java
source files dynamically even if they haven’t been compiled, but only if
they are on the source path. A message displays in the UML browser
indicating that the UML diagram may not be accurate. However, if a
source file isn’t on the source path, the .class file must be generated first.
A message prompts you to compile the project to generate the class files
for the UML diagram. If the class files are out of date, for example the
source file has been changed but hasn’t been recompiled, a message
displays in the UML browser indicating that the UML diagram may not be
accurate.

The UML browser also supports diagramming of reverse dependencies
from classes to JSPs (Java ServerPages). For example, a bean generated by
the JSP wizard links to the JSP that uses it. It doesn’t have to be a JSP bean;
it could be any class that the JSP uses.

V i s u a l i z i n g c o d e w i t h U M L 11-11

V i e w i n g U M L d i a g r a m s

JBuilder doesn’t include any references from project libraries in the UML
diagram unless you choose the Include References From Project Library
Class Files on the General page of the Project Properties dialog box
(Project|Project Properties). See “Including references from project
libraries” on page 11-18.

JBuilder’s UML browser

JBuilder’s UML browser provides various features for customizing the
diagram display, navigating diagrams and source code, viewing inner
classes, source code, and Javadoc, creating and printing images, and
refactoring.

You can view a UML diagram in JBuilder by opening a package or class
and selecting the UML tab in the content pane.

Note If your project is large, it may take some time to view the UML diagram
for the first time. JBuilder needs to load the classes to determine their
relationships before building the diagrams.

Figure 11.6 UML browser

11-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

V i e w i n g U M L d i a g r a m s

Viewing package diagrams

To view a limited package dependency diagram,

1 Choose Project|Make Project or Project|Rebuild Project to compile the
project.

2 Double-click the package node in the project pane or right-click it and
select Open.

3 Choose the UML tab in the content pane to view the package diagram.

Note If the package node is not available, choose Project|Project Properties|
General and check the Enable Source Package Discovery And
Compilation option.

Viewing class diagrams

To view a combined class diagram,

1 Choose Project|Make to compile your project or Java file.

2 Double-click a Java file in the project pane to open it or right-click it and
choose Open.

3 Choose the UML tab at the bottom of the content pane to view the UML
class diagram.

Viewing inner classes

A single class may contain more than one class, including inner classes
and anonymous inner classes. In this case, the UML browser presents a
tabbed user interface with one class per tab.

Individual anonymous inner classes are only diagrammed if the editor
cursor is positioned in that class or the class is navigated to from another
diagram. To position the cursor in the editor, choose the Source tab on an
open source file, position the cursor, and choose the UML tab.

Such selected anonymous inner classes are remembered until the file is
closed, so they can accumulate as tabs in the UML browser. Dependencies
of anonymous inner classes are folded into the classes which contain
them.

The UML browser uses the cursor position in the editor to determine the
class, method, and/or field that is selected in the UML browser. However,
if that cursor position is unchanged on subsequent visits to the viewer, the
last selection is retained. Note that for fields and methods, the cursor has
to be between the first and last character of the definition and not at the
start of the line.

V i s u a l i z i n g c o d e w i t h U M L 11-13

V i e w i n g U M L d i a g r a m s

Figure 11.7 Viewing inner classes

Viewing source code

In a class diagram, you can navigate to the source code and back to the
UML diagram. Double-click the central class, a method, a field, or a
property to view the source file for the class. The cursor is positioned
appropriately in the editor. Conversely, positioning the cursor in a class,
method, field, or property in the editor also highlights it in the UML
diagram. When in the editor, choose the UML tab to return to the UML
diagram.

The UML browser has a menu selection on the context menu: Go To
Source. Choose Go To Source to see the source code in the editor. This can
be useful for viewing source code for other classes and interfaces in
package and class diagrams.

The UML browser also provides tool tips for quickly viewing the
argument list for methods. Move the mouse over a method to see its tool
tip. Move the mouse over a class name to see its fully qualified class name,
which includes the package name.

Viewing Javadoc

There are several ways to access Javadoc for packages, interfaces, classes,
methods, and fields within a UML diagram.

• Select an element in the UML diagram, right-click, and choose View
Javadoc.

• Select an element in the UML diagram and press F1.

• Select an element in the structure pane and press F1.

11-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

V i e w i n g U M L d i a g r a m s

JBuilder’s Help Viewer displays the Javadoc, which is generated either
from Javadoc comments in the source file or from available information,
such as method signatures.

Note If you’ve run Javadoc with the javadoc tool or the Javadoc wizard, more
information is included.

See also

• “Viewing Javadoc” on page 14-20

Using the context menu

The UML browser has a context menu for quickly accessing common
commands. Right-click an element in the UML browser to activate the
menu. See the following documentation for information on these
commands and what they do:

Scrolling the view

There are several ways to scroll the UML diagram in the UML browser:

• Click and drag with the mouse
• Up and Down keys
• Arrow keys
• Scroll bars

The behavior differs according to the type of view displayed. View|Hide
All is the full view and only displays the content pane. View|Show All
displays the following panes by default: project pane, content pane, and
structure pane.

• Find References: “Learning about a symbol before refactoring” on
page 12-7

• Rename: “Rename refactoring” on page 12-2

• Move: “Move refactoring” on page 12-3

• Change
Parameters:

“Changing method parameters” on page 12-22

• Save Diagram: “Creating images of UML diagrams” on page 11-20

• Enable Class
Filtering:

“Filtering packages and classes” on page 11-18

• Go To Diagram: “Navigating diagrams” on page 11-15

• Go To Source: “Viewing source code” on page 11-13

• View Javadoc: “Viewing Javadoc” on page 11-13

V i s u a l i z i n g c o d e w i t h U M L 11-15

N a v i g a t i n g d i a g r a m s

Full view
In the full view (View|Hide All), you can use the mouse to move the view
up and down. Select the background of the diagram, then click, and drag
the diagram. The Page Up and Page Down keys, as well as the up and down
arrow keys, also move the view up and down. You can also manually
scroll the view using the scroll bars.

Partial view
In the partial view (View|Show All), you can drag the diagram in all
directions. Select the background of the diagram, then click and drag the
diagram in any direction. The Page Up and Page Down keys move the view
up and down. All four arrow keys can also be used to move the view in
any direction. You can also manually scroll the view using the scroll bars.

Refreshing the view

To refresh the UML diagrams after making changes to your project, use
one of these methods:

• Rebuild your project (Project|Rebuild Project).

• Press the Refresh button on the project pane toolbar.

Navigating diagrams
Double-click a package or class name in the UML diagram to view its
UML diagram. When an element is selected in the UML diagram, the
background highlighting color changes. After selection, you can use the
Arrow keys to move up and down the diagram. If nothing is selected, the
Page Up and Page Down keys scroll the diagram up and down. To browse
previously viewed UML diagrams, use the browser history Forward and
Back buttons available on the main toolbar for easy back and forth
navigation between UML diagrams.

You can also navigate by choosing packages and classes in the structure
pane. Click a package or class to select it in the diagram. Double-click a
class to see its diagram. Right-click a package and choose Open to view
the package diagram.

There’s also a selection on the UML browser’s context menu for viewing
UML diagrams: Go To Diagram. Right-click a package, class, or interface
name in the UML diagram and choose Go To Diagram to view its
diagram.

See also

• “UML and the structure pane” on page 11-16

11-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

N a v i g a t i n g d i a g r a m s

UML and the structure pane

The structure pane, located to the lower left of the UML diagram, provides
a tree view of relationships contained in expandable folders by category,
such as Extended Classes and Dependencies. If any of the categories are
not included in the diagram, the folder doesn’t appear. These folders offer
navigation to other diagrams and may also provide information which is
not in the diagram, since they reflect the relationships without regard to
filtering settings or other restrictions. For example, even if you have
filtered out specific classes and packages, they still appear in the structure
pane. See “Customizing UML diagrams” on page 11-17 for more
information on filtering UML diagrams. To expand and collapse folder
icons in the structure pane, double-click them or toggle the expand icon.

Packages and classes that aren’t shown in the diagram display in a lighter
color in the structure pane. They aren’t displayed if they’re filtered out or
if they’re redundant and removed for clarity.

Figure 11.8 Structure pane for UML diagrams

The structure pane can also be used for selection and navigation to a class
or package. Select a class, interface, or package in the structure pane to
select it in the diagram. Double-click a class or package in the structure
pane to navigate to its UML diagram. Right-click a package and choose
Open to view the UML package diagram.

You can quickly search for a package or class in the structure pane by
moving the focus to the tree and starting to type the name you want. For
more information, see “Searching trees” in “The JBuilder environment”
chapter of Introducing JBuilder.

Package diagrams
For package diagrams, the folders can include any or all of the following:

• Dependencies

• Reverse Dependencies

For definitions of these terms, see “JBuilder UML diagrams defined” on
page 11-7.

V i s u a l i z i n g c o d e w i t h U M L 11-17

C u s t o m i z i n g U M L d i a g r a m s

Opening a dependent package shows all the classes in that package with
the given relationship to the central package. This allows you to find out
which classes in a dependent package are causing the dependency.

Class diagrams
For class diagrams, the folders can include any or all of the following:

• Extended Classes
• Extended Interfaces
• Implemented Interfaces
• Extending Classes
• Implementing Classes
• Associations
• Reverse Associations
• Dependencies
• Reverse Dependencies

For definitions of these terms, see “JBuilder UML diagrams defined” on
page 11-7.

Customizing UML diagrams
Although you can’t manipulate the UML diagrams, such as moving or
resizing elements, you can customize the UML display in the Project
Properties and the IDE Options dialog boxes. For example, you can filter
what is displayed in a given diagram on a project basis, as well as include
references from project libraries. You can also globally customize the
display of your UML diagram by setting the sort order, font, colors, and
various other options.

Setting project properties

There are several project properties you can set for your UML diagrams in
the Project Properties dialog box:

• Filtering: available on the Class Filters page

• Library references: available on the General page

• References from generated source: available on the General page

To open the Project Properties dialog box, choose Project|Project
Properties or right-click the project file in the project pane and choose
Properties.

11-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C u s t o m i z i n g U M L d i a g r a m s

Filtering packages and classes
On the Class Filters page of the Project Properties dialog box, you can
exclude packages and classes from your project’s UML diagrams. Choose
Project|Project Properties and click the Class Filters tab. Choose UML
Diagram from the Name drop-down list. Then choose the Add button to
add any classes or packages to the exclusion list. Any classes or packages
in the list are then excluded from the UML diagram.

Return to your UML diagram and choose the Refresh button on the
project pane toolbar. Notice that the classes and packages in the Exclude
Package/Class list are excluded from the diagram but are still accessible
in the structure pane. To temporarily disable any package and class
filtering applied to your diagram, right-click the UML diagram and
uncheck Enable Class Filtering on the UML browser context menu.

Important If you have filtering set in the Project Properties dialog box, all of the
diagrams in the project are filtered. Disabling filtering from the context
menu in one diagram does not disable it for all diagrams. If you navigate
to another diagram in the project, filtering is still enabled. Once you close
the file or package, the setting reverts back to the project-level setting.

Including references from project libraries
Typically, libraries provide services to the applications that are built upon
them but don’t know anything about their users. To show these
relationships, you need to include references from the libraries.

On the General page of the Project Properties, you can check the Include
References From Project Library Class Files option to include references

V i s u a l i z i n g c o d e w i t h U M L 11-19

C u s t o m i z i n g U M L d i a g r a m s

from libraries in your UML diagrams. By default, this option is off and a
library’s reverse dependencies to a project are excluded.

Note If your project is very large, choosing this option could noticeably increase
the time it takes JBuilder to load the classes and create the UML diagram.

See also

• “Step 4: Adding references from libraries” on page 20-9 in Chapter 20,
“Tutorial: Visualizing code with the UML browser.”

Including references from generated source
You can also include references from generated source, such as IIOP files
and EJB stubs, in your UML diagrams. To do this, choose the Diagram
References From Generated Source option on the General page of Project
Properties.

Setting IDE Options

The UML page of the IDE Options dialog box (Tools|IDE Options)
provides options for global customization of the UML diagram in
JBuilder’s UML browser. To access the UML page, choose Tools|IDE
Options, and click the UML tab.

Here you can change the UML diagram’s visibility icons, grouping order,
sorting order, properties display, font family and size, and colors for the

11-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g i m a g e s o f U M L d i a g r a m s

various screen elements. Choose the Help button on the UML page for
more information.

See also

• “Customizing the IDE” in Introducing JBuilder

Creating images of UML diagrams
The UML browser supports saving UML diagrams as images. However,
the image size and color depth may be a limitation. In that case, an error
message is output. JBuilder supports the Portable Network Graphics
(PNG) format for images.

To save the UML diagram as an image, right-click in the UML browser
and choose Save Diagram. Enter a file name in the Save Diagram dialog
box. The PNG extension is automatically added to the file name.

Printing UML diagrams
Use the Print button on the main toolbar or the Print command (File|
Print) to print your UML diagram. You can also use the Page Layout
command (File|Page Layout) to set up page headers, set margins, and
change the page orientation. The diagram is scaled down slightly from the
size on the screen. Diagrams that are too large to fit on a page are printed
as multiple pages.

V i s u a l i z i n g c o d e w i t h U M L 11-21

R e f a c t o r i n g a n d F i n d R e f e r e n c e s

Important You need to move the focus to the UML diagram for the print option to be
available.

Refactoring and Find References
The UML browser provides access to JBuilder refactoring features. There
are several ways to access refactoring in the UML browser:

• Right-click a package, class, field, method, or property name in the
UML diagram and choose Rename from the context menu.

• Select a package, class, field, or method name in the UML diagram and
press Enter. Enter a new name in the Rename dialog box.

• Right-click a class name in the UML diagram and choose Move from
the context menu.

• Right-click a method name in the UML diagram and choose Change
Parameters from the context menu.

Before refactoring, you might also want to find all source files using a
selected symbol. To locate all references to a symbol, select the symbol in a
UML diagram or in the editor. Right-click the symbol and choose Find
References.

See also

• Chapter 12, “Refactoring code symbols”

• “Finding references to a symbol” on page 12-8

11-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

R e f a c t o r i n g c o d e s y m b o l s 12-1

C h a p t e r

12
Chapter12Refactoring code symbols

This is a feature of
JBuilder SE and

Enterprise

Code evolves as technology and market demands evolve. Over time,
existing code may need to be changed to allow more room to grow, to
improve performance, to accommodate changing needs, or simply to
clean up the code base. Refactoring is the term used to describe redesigning
existing code without changing its behavior from the user’s point of view.
It also means the individual tasks involved in that redesign.

Refactorings may be small or extensive, but even small changes can
introduce bugs. Refactoring must be done correctly and completely to be
effective. One change can have permutations throughout the entire
codebase. Good refactoring handles the entire set of permutations
responsibly and durably, so that no behavior is changed beyond
improvements in performance or maintainability and no bugs are
introduced.

Types of refactorings
JBuilder provides many types of refactorings:

• Optimize Imports
• Rename refactoring
• Move refactoring
• Change Parameters
• Extract Method
• Introduce Variable
• Surround With Try/Catch

Refactorings are available from the editor context menu, the Editor menu,
the structure pane context menu, and a UML diagram context menu. Note
that you cannot refactor across projects.

12-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T y p e s o f r e f a c t o r i n g s

Note If you refactor an EJB file, you will see the following warning:

WARNING: You are refactoring an EJB file. This may require
that you change some source code and the deployment
descriptor by hand. We recommend using the EJB Designer for
most refactoring scenarios.

You will need to update all relevant source files to support the refactoring.
(EJB development is a feature of JBuilder Enterprise.)

Optimize Imports

An Optimize Imports refactoring rewrites and reorganizes your import
statements according to the custom settings in the project properties. It
also removes any import statements that are no longer used in the code.

To learn how to optimize imports in JBuilder, see “Optimizing imports”
on page 12-14.

Rename refactoring

Rename refactoring applies a new name to a package, class, method, field,
local variable, or property, ensuring that all references to that name are
correctly handled. Rename refactoring a constructor renames the class.

Rename refactoring is far more than a search and replace task; references
must all be accounted for and properly handled while patterns must be
recognized so that overloaded names are handled correctly. For example,
when a rename refactoring is performed on an overloaded class name, the
class’s new name must be reflected in the class declaration and in every
instance of that class and every other reference to that class. However, the
new name must only be reflected in the target class, not in the other
classes that share its original name or their declarations, instances,
references, etc.

For packages, rename refactoring renames the specified package. Package
and import statements in class files are updated. The package,
sub-packages, and class source files are moved to the new source
directory and the old one is deleted.

R e f a c t o r i n g c o d e s y m b o l s 12-3

T y p e s o f r e f a c t o r i n g s

In JBuilder, you can rename refactor the following code symbols.

To learn how to rename refactor in JBuilder, see:

• “Rename refactoring a package” on page 12-17

• “Rename refactoring a class” on page 12-17

• “Rename refactoring a method” on page 12-19

• “Rename refactoring a field” on page 12-21

• “Rename refactoring a local variable” on page 12-20

• “Rename refactoring a property” on page 12-22

Move refactoring

In JBuilder, move refactoring is available for classes. Move refactoring
moves a specified class to a new package. Move refactoring is only
allowed on a top-level public class. The package the class is being moved
to cannot already contain a source file of the new name. The refactoring

Table 12.1 Refactoring and code symbols

Code symbol Description

Package Rename refactoring a package renames the package and the
entire sub-tree of packages. The package name cannot already
exist in the project.

Class, inner class,
or interface

Rename refactoring an outer public class renames the source file.
If the source file name already exists in the current package, the
refactoring is prevented. If the class is not the outer public class
and there is another class of the desired new name, the class isn’t
renamed.

Method Rename refactoring a method renames the method and all
references to that method. The method can be renamed in all
classes that this class inherits from or in all classes in the
hierarchy for the class. A forwarding method can be created.

Field Rename refactoring a field renames the field to a new name. The
new name cannot already exist in the class that declared the
original name. If there are scope conflicts between the new name
and the old name, the this keyword is added to the beginning of
the new field name. A warning is displayed if the new name
overrides or is overridden by an existing field in a superclass or
subclass.

Local variable Rename refactoring a local variable renames the variable to the
new name. The new name cannot already exist in the class that
declared the original name. The local variable name is
prepended to a field name if there is a conflict with a new
variable name.

Property Rename refactoring a property renames the property, as well as
its getter and setter. The new name cannot already exist in the
class that declared the original name.

12-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T y p e s o f r e f a c t o r i n g s

must update the declaration of the class, as well as all the usages of that
class.

To learn how to move refactor in JBuilder, see “Move refactoring a class”
on page 12-18.

Change Parameters

Change Parameters allows you to add, rename, delete and re-order a
method’s parameters. You can edit a newly added parameter before you
close the dialog; however, you cannot edit an existing parameter.

To learn how to change method parameters, see “Changing method
parameters” on page 12-22.

Extract Method

Extract Method turns a selected code fragment into a method. JBuilder
moves the extracted code outside of the current method, determines the
needed parameter(s), generates local variables if necessary, and
determines the return type. It inserts a call to the new method in the code
where the code fragment resided.

To learn how to extract a method, see “Extracting a method” on
page 12-24.

Introduce Variable

The Introduce Variable refactoring allows you to replace the result of a
complex expression, or part of the expression, with a temporary variable
name that explains the purpose of the expression or sub-expression.

To learn how to introduce a variable in JBuilder, see “Introducing a
variable” on page 12-25.

Surround With Try/Catch

This refactoring adds a try/catch statement around the selected block of
code. It detects all checked exceptions in a block and adds specific blocks
for each checked exception.

To learn how to surround a code block with a try/catch statement, see
“Surrounding a block with try/catch” on page 12-26.

R e f a c t o r i n g c o d e s y m b o l s 12-5

J B u i l d e r ’ s r e f a c t o r i n g t o o l s

JBuilder’s refactoring tools
You can access JBuilder’s refactoring tools from the editor context menu
and a UML diagram context menu. Refactoring commands are also
available on the Edit menu and the Search menu. For more information on
the editor, see “Working in the editor” in Introducing JBuilder. For more
information on UML, see Chapter 11, “Visualizing code with UML.”
(UML is a feature of JBuilder Enterprise.)

Before a refactoring, you can view, by category, all locations in the current
project where the selected symbol is referenced. You can also navigate to
the symbol’s definition. If JBuilder can’t complete the refactoring, the IDE
provides warning and error messages to help explain why. Warnings
don’t stop the refactoring. However, if an error is encountered, the
refactoring is prevented. For example, a refactoring might be prevented if
a file is read-only (not yet checked out) or if the symbol name already
exists.

Note Single file refactorings (for example, Extract Method and Introduce
Variable) do not display output unless there are errors or warnings.

JBuilder’s refactoring tools provide extensive information, including:

• Limitations reporting

JBuilder checks for conditions where your refactoring might encounter
problems. For example, JBuilder determines if needed dependency
information is missing or out-of-date, if a file is read-only, or if a class
file does not exist.

• References discovery

JBuilder finds all source files containing dependencies. The exact source
position is located.

• Validation

JBuilder determines if the new name is legal. For example, the name
might already be in use or contain illegal syntax.

• Source tree updating

JBuilder physically moves a directory or a file within the source tree for
a class move refactoring or a package rename refactoring. JBuilder also
updates import statements as needed for any dependencies.

• Reference renaming

JBuilder renames references with the new name.

12-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r ’ s r e f a c t o r i n g t o o l s

Setting up for references discovery and refactoring

To find all references to a symbol, you need to compile with references
from project libraries enabled. To verify this, go to the General tab of the
Project Properties dialog box. Make sure the Include References From
Project Library Class Files option is on. This option loads all library
relationships, allowing JBuilder to discover all references.

Note Checking this option is not required; it may slow down compiles and the
refactoring process. However, if this option is off, JBuilder can’t discover
all references for the Find References command (see “Finding references
to a symbol” on page 12-8 for more information).

Additionally, your project must be up-to-date; that is, the timestamp on
the class files and the source files must match. To make sure your project
is up-to-date, compile it using the Project|Make Project command.

To set up JBuilder for references discovery and refactoring,

1 Choose Project|Project Properties to open the Project Properties dialog
box.

2 Choose the General tab. Check the Include References From Project
Library Class Files option.

The General tab of the Project Properties dialog box looks like this:

R e f a c t o r i n g c o d e s y m b o l s 12-7

J B u i l d e r ’ s r e f a c t o r i n g t o o l s

3 To always build your project before refactoring, choose the Build tab of
the Project Properties dialog box. Then, click the General tab and
choose the Always Build Before Refactoring option. This option is off
by default. If you select this option, the refactoring is slower, but all
cases are caught. If you leave this option off, the refactoring is faster,
but there may be specific items missed in the refactoring.

The General tab of the Project Properties Build page looks like this:

4 Click OK to close the dialog box.

5 Choose File|Save All or click the Save All button on the toolbar.

6 Choose Project|Make Project to compile the entire project and load all
references.

Learning about a symbol before refactoring

Before you refactor, JBuilder provides several ways that you can learn
about a symbol. You can find its definition. You can also find all
references to the symbol; that is, all source files that use the symbol.

Finding a symbol’s definition
You can use Search|Find Definition or the Find Definition context menu
command to determine where a symbol is defined. To find a symbol’s
definition,

1 Compile the project.

2 Select the symbol in the editor.

12-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r ’ s r e f a c t o r i n g t o o l s

3 Right-click the symbol and choose Find Definition.

The source file where the symbol is defined is opened in the editor.

• If the symbol is an instance of a class, the cursor is moved to the
instance definition.

• If the symbol is a method, the class that defines the method is
opened in the editor, with the cursor placed at the start of the
method signature.

• If the symbol is a variable, and the variable is defined in the open
class, the cursor moves to the variable definition. If the variable is
public and defined in another class, the class is opened in the editor
with the cursor placed on the definition.

Important In order for a definition to be located, you must have already compiled
your project. The class that includes the definition must be on the import
path or in the same package as the symbol.

Finding references to a symbol
Before refactoring, you might also want to find all source files using a
selected symbol. To locate all references to a symbol,

1 Compile the project.

2 Select the symbol in the editor or the structure pane.

3 Right-click the symbol and choose Find References or choose Search|
Find References.

References are displayed on the Search Results tab of the message pane
in order of discovery. Class and method references are sorted by
category. Field and local variable references are sorted by file name.
You cannot find references for a package or a property.

Note If you try to discover information about a symbol and JBuilder does not
open a source file in the editor or display the Search Results tab, your
project might not be compiled or might not be compiled with references
from project libraries. For more information, see “Setting up for references
discovery and refactoring” on page 12-6.

R e f a c t o r i n g c o d e s y m b o l s 12-9

J B u i l d e r ’ s r e f a c t o r i n g t o o l s

The following table details, by code symbol, the reference categories that
can be displayed in the Search Results tab.

Class references
If you have located references for a class, double-click a reference category
in the Search Results tab to expand it. The source files where the class is
referred to are listed. Click a source file, then click the reference to go
directly to the reference in the editor.

Figure 12.1 Class references in the Search Results tab

Table 12.2 Find References details

Code symbol Reference category

Class, inner
class, or interface

Ancestors- Classes that this class directly inherits from.

Descendents- Classes that directly descend from this class.

Type references- Classes that declare or instantiate the type
of object for the class.

Descendents type references- Classes that are descendents
or use descendents of the type of object for the class.

Member references- Members in this class.

Descendents member references- Members in classes that
descend from this class.

Method or
constructor

Declarations- Locations where this method is declared.

Direct usages- Locations in directly instantiated classes that
call this method.

Indirect usages- Locations in ancestor and descendent
classes that indirectly call this method through an ancestor
or descendent.

Field and local
variable

Writes- Locations where the field or local variable is
written.

Reads- Locations where the field or local variable is read.

12-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r ’ s r e f a c t o r i n g t o o l s

Method references
If you have located references for a method, double-click a reference
category to expand it. The source files where the method is referred to are
listed. Click a source file, then click the reference to go directly to the
reference in the editor.

Figure 12.2 Method references in the Search Results tab

Field and local variable references
If you have located references for a field or local variable, double-click a
file name to display the writes and reads for that symbol. Click the write
or read reference to position the cursor on the reference in the editor.

Figure 12.3 Field and local variable references in the Search Results tab

Viewing changes before a refactoring
For some types of refactoring, JBuilder provides the opportunity to view
potential changes before committing the refactoring. You might want to
preview changes when you are first using the refactoring tools, in order to
carefully examine what JBuilder will change. The preview option, View
References Before Refactoring, is shown below.

Figure 12.4 Rename Class dialog box

R e f a c t o r i n g c o d e s y m b o l s 12-11

J B u i l d e r ’ s r e f a c t o r i n g t o o l s

After you choose the preview option and click OK on the dialog box,
potential changes are displayed on the Refactoring tab of the message
pane. Potential changes, the lines that will change if you complete the
refactoring, are displayed by file name, sorted in the order of discovery.
To go directly to a reference in a source file, expand the file node and click
the reference.

Note Some refactorings do not provide a preview option.

Before refactoring, the Refactoring tab will look similar to the following
figure.

Figure 12.5 Refactoring tab before refactoring

The Refactoring tab contains a Refactor button on the toolbar. It also
displays an open cross-hatched X to show that the refactoring is
unfinished. To finish the refactoring and commit the changes, click the
Refactor button. The status bar in the Refactoring tab displays a message
informing you of the progress.

Note If you edit any of the selected files before completing the refactoring,
JBuilder won’t allow the refactoring, since the files will be out-of-date. The
Refactoring tab status bar displays the following message: “Files have
changed - can’t refactor.”

The following table details the type of information displayed for a
refactoring.

Table 12.3 Refactoring details

Code symbol
Type of
refactoring Information displayed

Package Rename Source files that contain a class reference that
will change.

Class, inner class,
or interface

Rename Line locations in the current source file where
the class is declared; includes constructors.
Also lists source code locations where the class
is used.

12-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r ’ s r e f a c t o r i n g t o o l s

When the refactoring is completed, the status bar displays the message
“Refactoring completed.” The Refactor button is dimmed.

After refactoring, the Refactoring tab will look similar to the following
figure.

Figure 12.6 Refactoring tab after refactoring

After refactoring, the Refactor button is removed from the tab and the
cross-hatch symbol closes to an X. The contents of the Refactoring tab,
however, do not change. The original lines of source code are still
displayed, so that you can compare the changes made by the refactoring.
Click on an original source code line to go to the line that was changed.

Class Move Source code locations where the class’ current
package is declared or imported. Indicates if a
package in the list of imports is added or
deleted. (An import statement is added for any
dependencies the class has on the package it is
being moved from.)

Method Rename Source code locations where the method is
declared and used. Indicates if a forwarding
method is created.

Method Change
Parameters

Source code locations where the method is
declared and called.

Field and local
variable

Rename Source code locations where the symbol is
declared and called.

Property Rename Source code locations where the property is
declared and where accompanying getter and
setter are declared and called.

Table 12.3 Refactoring details (continued)

Code symbol
Type of
refactoring Information displayed

R e f a c t o r i n g c o d e s y m b o l s 12-13

E x e c u t i n g a r e f a c t o r i n g

Figure 12.7 Source file and Refactoring tab after refactoring

Executing a refactoring
To complete a refactoring in JBuilder, you first select the symbol or block
of code you want to refactor. Then, right-click or use the Edit menu to
choose the type of refactoring you want to complete. For most
refactorings, JBuilder provide a dialog box where you can enter a new
name and choose whether or not to preview the refactoring. For some
refactorings, such as surrounding a block of code with try/catch
statement, JBuilder will automatically complete the refactoring for you.

See the following topics for more information:

• “Optimizing imports” on page 12-14

• “Rename refactoring a package” on page 12-17

• “Rename refactoring a class” on page 12-17

• “Move refactoring a class” on page 12-18

• “Rename refactoring a method” on page 12-19

• “Rename refactoring a local variable” on page 12-20

• “Rename refactoring a field” on page 12-21

• “Rename refactoring a property” on page 12-22

• “Changing method parameters” on page 12-22

12-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x e c u t i n g a r e f a c t o r i n g

• “Extracting a method” on page 12-24

• “Introducing a variable” on page 12-25

• “Surrounding a block with try/catch” on page 12-26

Optimizing imports

Use Optimize Imports to rewrite and reorganize your import statements
according to the custom settings in the project properties. Optimize
Imports also removes any import statements that are no longer used. You
can customize the order of imports on the Imports tab of the Project
Properties dialog box Formatting page (Project|Project Properties).
Optimize Imports is available from the editor.

To customize the package import style, open the Project Properties dialog
box. Choose one of the following:

• Right-click the project file in the project pane and choose Properties, or

• Select Project|Project Properties.

To set threshold and sort order options for imports,

1 Select the Formatting tab, then the Imports page. Choose the Threshold
tab to set the package import threshold. The Threshold tab looks like
this:

R e f a c t o r i n g c o d e s y m b o l s 12-15

E x e c u t i n g a r e f a c t o r i n g

2 The Always Import Classes option determines if package import
statements are added to your code. Check this option if you do not
want to add package import statements to your code. Instead,
individual classes are imported directory. When you use this option,
the Package Import Threshold setting is ignored.

3 The Package Import Threshold sets how many classes must be
imported from a package before rewriting class imports into a package
import statement.

Classes up to this threshold are imported using individual class import
statements. When the threshold is exceeded, the entire package is
imported. For example, when three is entered in this field, and you use
four or more classes from a package, the entire package will be
imported.

The Preview box displays the results of different import thresholds
settings.

4 Choose the Sort Order page to determine how imports are sorted. The
Sort Order page looks like this:

5 To add an import that starts with a specified prefix, choose the Add
Prefix button. Enter the prefix into the Add Prefix dialog box.

12-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x e c u t i n g a r e f a c t o r i n g

6 To insert an extra line break between import statements or groups of
import statements, select the package you want to insert an extra line
break below and click the Add Blank Line button.

7 To change a package import statement, select it and click the Edit
button.

8 To remove an import from the list, select it and click Remove.

9 To move an import or a blank line within the list, click Move Up or
Move Down.

10 To import a pre-defined formatting, click the Import button. The
Import Code Formatting Settings dialog box is displayed. Choose the
formatting you want to import and click OK.

11 To export and save the formatting, click the Export button. The Export
Code Formatting Settings dialog box is displayed. Enter the name of
the file you want to save the settings to and click OK. The file type must
be .codestyle. Formatting setting files are saved to the <.jbuilder>
directory.

Note Comments in the import section of the code are preserved.

Tip If you want to customize the order of import statements for all new
projects, choose Project|Default Project Properties and make your
modifications on the Import Style page in the Default Project Properties
dialog box.

Using Optimize Imports
To optimize imports,

1 Choose Project|Make Project to compile your project.

2 Choose Edit|Optimize Imports or right-click in the editor and choose
Optimize Imports. You can also use the shortcut Ctrl + I. Additionally,
you can choose the a symbol in the structure pane, right-click, and
choose Optimize Imports.

Tip Choose Edit|Undo to undo Optimize Imports.

To optimize imports from the project pane,

1 Right-click the package in the project pane.

2 Choose Format Package.

3 Check the Optimize Imports option in the Format Code dialog box and
click OK.

R e f a c t o r i n g c o d e s y m b o l s 12-17

E x e c u t i n g a r e f a c t o r i n g

Rename refactoring a package

You can rename refactor a package from the editor, the structure pane, or
a UML class or package diagram. Rename refactoring a package renames
the package and the entire sub-tree of packages to the new root package
name. It also moves the package and all class names to the new name and
source directory. The existing source directory structure for that package
is deleted.

To rename refactor a package,

1 Right-click the package name in a UML class or package diagram, the
structure pane, or in the editor.

2 Choose Rename.

The Rename Package “package name” dialog box is displayed.

3 Enter the new name for the package in the New Name field.

4 Click the View References Before Refactoring option if you want to
view the changes before completing the refactoring. Otherwise, click
OK to complete the refactoring. (If you preview, click the Refactor
button on the toolbar to complete the refactoring.)

The package rename refactoring is prevented if the new package name
already exists or is invalid.

Rename refactoring a class

You can rename refactor a class, inner class, or interface from either the
editor, the structure pane, or the UML class diagram. Rename refactor for
an outer public class renames all declarations of and all usages of the class
and the source file. If you select a constructor, the rename refactoring
renames the class.

To rename refactor a class, inner class, or interface,

1 Open the class file you want to rename in the editor or as a UML
diagram.

2 In the editor, UML diagram, or structure pane, right-click the class,
inner class, or interface you want to change the name of.

12-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x e c u t i n g a r e f a c t o r i n g

3 Choose Rename.

The Rename Class “ClassName” dialog box is displayed.

4 Enter the new name of the class in the New Name field.

5 Click the View References Before Refactoring option if you want to
view the changes before completing the refactoring. Otherwise, click
OK to complete the refactoring. (If you preview, click the Refactor
button on the toolbar to complete the refactoring.)

The refactoring is prevented if the class identifier is invalid. If the class is
not the outer public class and there is another non-outer public class of the
desired new name, the class isn’t renamed.

Move refactoring a class

You can move a class to a new package from the editor, the structure pane,
or the UML class diagram. Move refactoring a class moves that class to a
new package as long as the new package does not already contain a source
file of the new name. The package and import statements in the class
source file, as well as in all classes that reference the moved class, are
updated. (An import statement is added for any dependencies the class has
on the package it is being moved from.) The class must be the top level
public class.

To move a class to a new package,

1 Open the class file you want to move in the editor or as a UML
diagram.

2 In the editor, UML diagram, or structure pane, right-click the class
name.

R e f a c t o r i n g c o d e s y m b o l s 12-19

E x e c u t i n g a r e f a c t o r i n g

3 Choose Move.

The Move Class “ClassName” dialog box is displayed.

4 Enter the name of the package the class is being moved to in the To
Package field.

5 Click the View References Before Refactoring option if you want to
view the changes before completing the refactoring. Otherwise, click
OK to complete the refactoring. (If you preview, click the Refactor
button to complete the refactoring.)

The class isn’t moved if the class identifier is invalid or if the source file
name already exists in the new package. JBuilder adds an import statement
for the old package name, if needed.

Note If you move a class to a package that doesn’t exist, JBuilder creates the
new package, adds it to your project, creates the new source directory, and
moves the class to it. It also updates package names and import
statements. Additionally, if the package no longer contains any classes,
JBuilder removes that package from the project and deletes its source
directory.

Rename refactoring a method

You can rename refactor a method from either the editor, the structure
pane, or a UML diagram. Rename refactoring a method renames the
method, all declarations of that method, and all usages of that method.
The method can be renamed from the selected class down in the hierarchy
or in the entire hierarchy. A forwarding method, that passes on the
method call to the new method, can be created. This allows your public
API to remain intact.

Note Renaming a method does not rename overloaded methods; that is,
methods with the same name but with different method signatures.

To rename refactor a method,

1 Open the source file containing the method you want to rename in the
editor or as a UML class diagram.

2 In the editor, UML diagram, or structure pane, right-click the method
you want to change the name of.

12-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x e c u t i n g a r e f a c t o r i n g

3 Choose Rename.

The Rename Method “methodName” dialog box is displayed.

4 Enter the new name of the method in the New Name field.

5 The Refactor Ancestors option (on by default) renames methods in
classes that this class inherits from.

6 Turn off Refactor Ancestors to rename the method only in this class and
in its descendents. You can then choose to add a forwarding method by
clicking the Create Forwarding Method option.

7 Click the View References Before Refactoring option if you want to
view the changes before completing the refactoring. Otherwise, click
OK to complete the refactoring. (If you preview, click the Refactor
button on the toolbar to complete the refactoring.)

The refactoring is prevented if the new method name already exists in the
file where it is declared. If the name exists in other files in the direct
inheritance, a warning is issued. If you are refactoring with Refactor
Ancestors, a warning can also be displayed if the method exists, but is not
in the editable source path. For example, if the method exists in a library,
you won’t be able to refactor it, as libraries are read-only.

Rename refactoring a local variable

You can rename refactor a local variable only from the editor. A local
variable rename refactoring changes the declaration and usages of that
variable to the new name. Note that a method parameter is treated as a
local variable.

To rename refactor a local variable,

1 Right-click the local variable you want to change the name of.

R e f a c t o r i n g c o d e s y m b o l s 12-21

E x e c u t i n g a r e f a c t o r i n g

2 Choose Rename.

The Rename Variable “variableName” dialog box is displayed.

3 Enter the new name of the variable in the New Name field.

4 Click the View References Before Refactoring option if you want to
view the changes before completing the refactoring. Otherwise, click
OK to complete the refactoring. (If you preview, click the Refactor
button on the toolbar to complete the refactoring.)

The refactoring is prevented if the new name exists in the class that
declared the original variable.

Rename refactoring a field
You can rename refactor a field from either the editor, the structure pane,
or a UML class diagram. A field rename refactoring changes the
declarations and usages of that field to the new name.

To rename refactor a field,

1 Open the source file containing the field you want to rename in the
editor or as a UML class diagram.

2 In the editor, UML diagram, or structure pane, right-click the field you
want to change the name of.

3 Choose Rename.

The Rename Field “variableName” dialog box is displayed.

4 Enter the field’s new name in the New Name field.

5 Click the View References Before Refactoring option if you want to
view the changes before completing the refactoring. Otherwise, click
OK to complete the refactoring. (If you preview, click the Refactor
button on the toolbar to complete the refactoring.)

12-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x e c u t i n g a r e f a c t o r i n g

The refactoring is prevented if the new name exists in the class that
declared the field. If there are scope conflicts between the new name and
the old name, the this keyword is added to the new field name. A warning
is displayed if the new name overrides or is overridden by an existing
field in a superclass or subclass.

Rename refactoring a property

This is a feature of
JBuilder Enterprise

You can rename refactor a property only from a UML class diagram. A
property rename refactoring changes all declarations of that property, as
well as its getter and setter methods.

To rename refactor a property,

1 Right-click the property you want to change the name of.

2 Choose Rename.The Rename Property “propertyName” dialog box is
displayed.

3 Enter the new name of the property in the New Name field.

4 Click the View References Before Refactoring option if you want to
view the changes before completing the refactoring. Otherwise, click
OK to complete the refactoring. (If you preview, click the Refactor
button on the toolbar to complete the refactoring.)

The refactoring is prevented if the new name exists in the class that
declared the original property.

Changing method parameters

You can add, delete and re-order a method’s parameters from the editor,
the structure pane or from a UML diagram. You can edit a newly added
parameter before you close the Change Parameters dialog box; however,
you cannot edit an existing parameter.

To change a method’s parameters,

1 Right-click the signature of the method you want to change parameters
for.

R e f a c t o r i n g c o d e s y m b o l s 12-23

E x e c u t i n g a r e f a c t o r i n g

2 Choose Change Parameters of “methodName”.

The Change Parameters dialog box is displayed. Existing parameters
are displayed in the list.

• The Name column displays the name of the parameter.

• The Type column displays the Java type.

• The State column shows if the parameter is new or existing and if it
is in use in your code. For new parameters, it shows the default
value.

3 To add a new parameter, click the Add button. The Add New
Parameter dialog box is displayed where you choose the parameter’s
type, enter a name for the parameter, and assign a default value.

4 To edit a newly added parameter, select the parameter and click Edit.
The Edit New Parameter dialog box is displayed where you can change
the name, type, or default value.

5 To remove a newly added parameter, choose the parameter and click
the Remove button. You cannot remove existing, in use parameters.

6 To rearrange the order of the method parameters, use the Move Up and
Move Down buttons.

12-24 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x e c u t i n g a r e f a c t o r i n g

7 The Refactor Ancestors option (on by default) refactors methods in
classes that this class inherits from. Turn off Refactor Ancestors to
refactor the method only in this class and in its descendents. You can
then choose to add a forwarding method by clicking the Create
Forwarding Method option.

8 Click the View References Before Refactoring option if you want to
view the changes before completing the refactoring. Otherwise, click
OK to complete the refactoring. (If you preview, click the Refactor
button on the toolbar to complete the refactoring.)

The refactoring is prevented if the new method signature already exists in
the file where it is declared. If the signature exists in other files in the
direct inheritance, a warning is issued. If you are refactoring with Refactor
Ancestors, a warning can also be displayed if the same method exists, but
is not in the editable source path. For example, if the method exists in a
library, you won’t be able to refactor it, as libraries are read-only.

Note that the refactoring is prevented if the new parameter name or type
is not a valid Java identifier.

Extracting a method

The Extract Method refactoring allows you to turn a selected code
fragment into a method. You can access this refactoring from the editor.

To extract a method,

1 In the editor, select the block of code you want to turn into a method.

2 Right-click and choose Extract Method. The Extract Method dialog box
is displayed.

3 Enter a new name for the method in the New Method Name field. The
name should explain the purpose of the method.

4 Click OK to complete the refactoring.

5 Use Edit|Undo to undo the refactoring.

JBuilder moves the extracted code outside of the current method,
determines the needed parameter(s), generates local variables if
necessary, and determines the return type. It inserts a call to the new

R e f a c t o r i n g c o d e s y m b o l s 12-25

E x e c u t i n g a r e f a c t o r i n g

method in the code where the code fragment resided. JBuilder will not
allow the refactoring if more than one variable is written to or if it is read
after the block.

Note If the set of statements is not completely selected, JBuilder will attempt to
expand the selection out to the nearest enclosing expression or statement.

Introducing a variable

Use the Introduce Variable refactoring to replace the result of a complex
expression, or part of the expression, with a temporary variable name. The
name should explain the purpose of the expression or sub-expression.
This is also known as an explaining variable.

To introduce a variable,

1 Select the complex expression you want to replace with a temporary
variable.

2 Right-click and choose Introduce Variable. The Introduce variable
dialog box is displayed.

3 Enter the name of the new variable in the Variable Name field.

4 Check the Include All Read Expressions option to replace all reads from
that expression. If this option is off, only the current selection is
replaced.

5 Click OK to close the dialog box. The refactoring is automatically
completed.

6 Use Edit|Undo to undo the refactoring.

A final temporary variable with the selected variable name is generated
and initialized in the correct place. The original expression is replaced
with the newly generated variable.

12-26 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E x e c u t i n g a r e f a c t o r i n g

Surrounding a block with try/catch

You can place a try/catch statement around a selected block of code.
JBuilder will detect all checked exceptions in a block and adds specific
blocks for each checked exception. This refactoring is available from the
editor.

To surround a block with a try/catch statement,

1 Select the block of code in the editor.
2 Right-click and choose Surround With Try/Catch.

The code is surrounded with a try/catch statement. If the selected block is
not a valid block of statements, an error will display in the Refactoring tab
and the refactoring will be prevented. Use Edit|Undo to undo the
refactoring.

Undoing a refactoring

Once you’ve completed a refactoring, you can reverse it by clicking the
Undo button on the Refactoring toolbar. Undo immediately, before you
make other changes to files. All changes are reversed. You can then redo
the refactoring by clicking the Refactor button on the toolbar. Undo is
active as long as the Refactoring tab is open.

When you use a refactoring that does not display output in the
Refactoring tab, you can undo changes with Edit|Undo. Refactorings that
do not display output are:

• Optimize Imports
• Extract Method
• Introduce Variable
• Surround With Try/Catch

Saving refactorings

After you complete a refactoring, you should immediately save the files in
your project with the File|Save All command. If you are using a version
control system, commit or check in the changes right away.

If you try to close your project before saving files, JBuilder displays the
Save Modified Files dialog box where you can select the files you want to
save. If you don’t save files, your source code reverts to its state before the
refactoring(s).

Important Refactoring works on files that may not be open in the editor at the time of
the refactoring. JBuilder automatically saves changes to those files.
JBuilder makes these changes and saves files so that your source code isn’t
in an inconsistent state.

U n i t t e s t i n g 13-1

C h a p t e r

13
Chapter13Unit testing

Unit testing is a feature of
JBuilder Enterprise.

Unit testing means writing tests for small, discretely defined portions of
your code, such as a method, and then running and analyzing the tests.
When a developer does unit testing as part of their development process,
it means writing many small repeatable tests and running them on a
regular basis. The benefits are better confidence in the quality of the code
and early discovery of regressions when code modifications are made. A
regression is a bug that has been introduced in code that was previously
working. Many methodologies recommend running unit tests as part of
the build process every time you build your project. If the unit tests don’t
pass, these methodologies consider the build process to have failed.

JUnit
JUnit is an open source framework for unit testing written by Erich
Gamma and Kent Beck. JUnit provides a variety of features which support
unit testing, among them two classes, junit.framework.TestCase and
junit.framework.TestSuite, which are used as base classes for writing unit
tests. JUnit also provides three different kinds of test runners, TextUI,
SwingUI, and AwtUI. Of these three test runners, two of them, TextUI and
SwingUI, are available within the JBuilder IDE. For more information
about JUnit, visit http://www.junit.org. JUnit documentation is also
available in your <jbuilder>/thirdparty/<junit>/doc directory.

JBuilder integrates JUnit’s unit testing framework into its environment.
This means that you can create and run JUnit tests within the JBuilder
IDE. In addition to JUnit’s powerful unit testing features, JBuilder adds
wizards for creating test cases, test suites, and test fixtures, and a test
runner called JBTestRunner which combines both text and GUI elements
in its output and integrates seamlessly into the JBuilder IDE.

13-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C a c t u s

See also

• “Discovering tests” on page 13-3

• “Creating JUnit test cases and test suites” on page 13-4

• “Running tests” on page 13-13

Cactus
Cactus extends JUnit to provide unit testing of server-side Java code. It
does this by redirecting your test case to a server-side proxy. For more
information about Cactus, visit http://jakarta.apache.org/cactus/
index.html. Cactus documentation is also available in your <jbuilder>/
thirdparty/<jakarta-cactus>/doc directory.

JBuilder provides several features that make Cactus testing easier. The
Cactus Setup wizard allows you to configure your project for Cactus test
support. The EJB Test Client wizard can generate a Cactus test case for
your Enterprise JavaBean (EJB). JBuilder’s integration of Cactus into its
environment means that you can run your Cactus tests within the JBuilder
IDE when a properly configured server and project are available.

See also

• “Working with Cactus” on page 13-11

• “Cactus Setup wizard” on page 13-11

• “Running and testing an enterprise bean” in Enterprise JavaBeans
Developer’s Guide

Unit testing features in JBuilder
JBuilder’s unit testing features integrate JUnit and Cactus into JBuilder’s
IDE and provide tools for writing unit tests and organizing them into test
suites, running tests, analyzing tests, and debugging tests. JBuilder
provides a set of predefined test fixtures for performing common tasks
that your tests may require. JBuilder’s JBTestRunner offers a way to run
tests that combines both text and GUI output. JBuilder includes the
following unit testing features:

• Test Case wizard

• Test Suite wizard

• EJB Test Client wizard

• JDBC Fixture

U n i t t e s t i n g 13-3

D i s c o v e r i n g t e s t s

• JNDI Fixture

• Testing by comparison

• Custom Fixture wizard

• Cactus testing

• Test running

• JBTestRunner

• JUnit TextUI support

• JUnit SwingUI support

• Test stack trace filter

• Test debugging

• JUnit Test Collector

Discovering tests
By default, JBuilder automatically identifies a class as a test case if it
extends junit.framework.TestCase or junit.framework.TestSuite. If a class is
identified as a test case and an appropriate runtime configuration exists,
right-clicking either the name of the source file in the project pane or the
tab containing the name of the source file when it’s open in the editor
brings up a context menu which contains Run Test and Debug Test
options. An Optimize Test option is also available when Borland
Optimizeit is properly installed.

An alternate method of identifying tests is provided by JUnit Test
Collector.

JUnit Test Collector

JUnit Test Collector is a feature of JBuilder that provides a graphical user
interface (GUI) for the PackageTestSuite class. This is useful for test
discovery, so that you don’t need to maintain a list of all your test classes.
JUnit Test Collector is available in the Runtime Configuration Properties
dialog box for a Test type runtime configuration. You switch it on by
selecting the Package radiobutton on the Run page of this dialog box.

To add a Test type run configuration that uses JUnit Test Collector,

1 Select Project|Project Properties.

2 Select the Run page of the Project Properties dialog box.

3 Click the New button.

13-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g J U n i t t e s t c a s e s a n d t e s t s u i t e s

4 Select the Run page of the Runtime Configuration Properties dialog
box.

5 Set the Type to Test.

6 Click the Package radiobutton. This enables JUnit Test Collector and
disables the default test discovery mode.

7 Specify whether or not you want the test scanner to include
sub-packages by checking or unchecking Include Sub-packages.

8 Specify strings that your test class names start or end with in the Name
Starts With and Name Ends With fields. Doing so restricts the tests that
the test scanner finds to only those that contain these strings. This step
is optional.

9 Click OK to save the runtime configuration and close the Runtime
Configuration Properties dialog box.

10 Click OK to close the Project Properties dialog box.

Tests which match the filter you provided in the Runtime Configuration
Properties dialog box will now be correctly identified as tests. This means
that the Run Test and Debug Test options will be displayed on the context
menu when you right-click one of the matching tests in the project pane.
An Optimize Test option will also be available if Borland Optimizeit is
properly installed.

See also

• “Setting runtime configurations” on page 7-6

Creating JUnit test cases and test suites
A test case is an instance of junit.framework.TestCase. A test case class
contains one or more methods that exercise one or more parts of a class in
the application under test. It also contains setUp() and tearDown() methods.
The setUp() method is used to do any required setup that needs to be done
before each test method is run. The tearDown() method is used to clean up
and release resources after each test method has been run. When JUnit
tests are run, a new instance of the test case class is created for each test
method. The setUp() and tearDown() methods are run once for each
instance. For example, given a test case called MyTestCase which contains
the methods testMethod1() and testMethod2(), the order of execution would
be:

1 Two instances of MyTestCase are created by the test runner.

2 The setUp() method is called.

3 The testMethod1() method is called.

U n i t t e s t i n g 13-5

C r e a t i n g J U n i t t e s t c a s e s a n d t e s t s u i t e s

4 The tearDown() method is called.

5 The setUp() method is called.

6 The testMethod2() method is called.

7 The tearDown() method is called.

A test case and a test suite both extend TestCase. The difference between a
test case and a test suite is that a test case contains individual test
methods, while a test suite is used to organize test cases into a logical
group and run them as a group. A test suite can call any number of test
cases or other test suites.

An important goal of unit testing is to create repeatable tests. If tests are
repeatable they always give the same result when the software under test
is working properly. If a tested method is no longer working as expected,
the test will fail. If you run unit tests each time you make modifications to
your software, it helps ensure that you have not introduced any errors or
regressions.

The number of tests you write is your decision. Some developers have a
policy of writing tests for every public method in their code. You don’t
have to achieve this level of coverage to provide some protection against
regressions. You might want to concentrate at first on just writing tests for
the areas of the software that are the most critical, or those that are the
most likely to break.

Test methods should return an expected result if the test passes. If the test
fails, they should return information which is useful in determining the
cause of the failure. The Test Case wizard creates skeletons of test
methods and you make the decision about what sort of results are
meaningful and provide the implementation.

See also

• Chapter 21, “Tutorial: Creating and running test cases and test suites”

The Test Case wizard

The Test Case wizard is used to create test classes that extend TestCase and
contain skeleton methods for exercising the methods of the class under
test. To go to the Test Case wizard, select File|New from the menu, click
the Test tab of the object gallery, select Test Case, and click OK. The Test
Case wizard creates new test cases in the test source directory as specified
on the Paths page of the Project Properties dialog box. To view or edit the
test source directory, go to Project|Project Properties, select the Paths
page, and click the Source tab.

The Test Case wizard lets you select the class and the methods to test,
make use of predefined test fixtures, and create a new runtime

13-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g J U n i t t e s t c a s e s a n d t e s t s u i t e s

configuration for the test case. For more specific information on the UI of
the Test Case wizard, click the Help button in the wizard.

See also

• Chapter 21, “Tutorial: Creating and running test cases and test suites”

• “Using predefined test fixtures” on page 13-8

Adding test code to your test cases

The Test Case wizard creates the skeletons of test cases, but it’s up to you
to fill in the actual test code. The Test Case wizard flags the areas of code
that need to be completed with @todo Javadoc comments. These comments
are shown in the structure pane in the To Do node of the tree. To complete
your test cases, you will have to add test code to each test method. You
will often also need to provide non-null values for certain variables which
will also be flagged with @todo comments by the Test Case wizard.

Here is an example of a simple test method:

public void testSum() {
 assertEquals(2, sum(1,1));
}

Test methods must be public, they must be void, and they must take no
arguments.

When you add test code to your test methods, you need a way to
determine whether a test passed or failed. You can design a test method to
test for various conditions and report failure if they are not met. The most
common way of doing this is to call one of the assert methods in
junit.framework.Assert, for example:

• assertEquals()—makes the assertion that the arguments passed to it are
equal.

• assertTrue()—makes the assertion that a boolean expression passed to it
evaluates to true.

• assertNotNull()—makes the assertion that an argument passed to it is
not null.

There are several overloaded versions of these methods in
junit.framework.Assert. Their various method signatures take different
types of arguments, making them more flexible. Any of these methods
trigger a test failure, which is reported by a test runner, if the condition it
tests is not met. If a test method finishes without triggering a failure, the
test runner reports success. You can call any of the assert methods directly
from your test case because TestCase is a subclass of Assert.

U n i t t e s t i n g 13-7

C r e a t i n g J U n i t t e s t c a s e s a n d t e s t s u i t e s

Tip To view the various methods in junit.framework.Assert, open a test case in
the editor, double-click the parent class, TestCase, in the structure pane,
then double-click its parent class, Assert.

You can also write a test method that throws an exception. Here is an
example:

public void testException() throws Exception {
 throw new Exception("ouch!");
}

When a test throws an exception that it does not handle, the test runner
will report a failure for this method.

For more information on writing tests with JUnit, see the article by Kent
Beck and Erich Gamma, “JUnit Test Infected: Programmers Love Writing
Tests” on the JUnit web site.

The Test Suite wizard

The Test Suite wizard is used to create a test suite that groups test cases so
they can be run as a batch. To go to the Test Suite wizard, select File|New
from the menu, click the Test tab of the object gallery, and select Test
Suite.

The Test Suite wizard lets you select the test cases to be included in the
test suite and create a runtime configuration. For more specific
information on the UI of the Test Suite wizard, click the Help button in the
wizard.

See also

• Chapter 21, “Tutorial: Creating and running test cases and test suites”

The EJB Test Client wizard

The EJB Test Client wizard, available on the Enterprise page of the object
gallery, allows you to create three different types of test clients for testing
your Enterprise JavaBeans (EJB). Of these three types of test clients, two of
them, JUnit test client and Cactus JUnit test client, are designed for unit
testing.

Tip Although it’s possible to create a test case that tests an EJB using the Test
Case wizard, it’s better to use the EJB Test Client wizard when testing an
EJB. That’s because the EJB Test Client wizard generates more EJB-specific
code.

13-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g p r e d e f i n e d t e s t f i x t u r e s

See also

• “Running and testing an enterprise bean” in Enterprise JavaBeans
Developer’s Guide

Using predefined test fixtures
Test fixtures are utility classes that can be used by tests to perform routine
tasks to create the desired test environment. One example of this is
managing database connections to data that is used for testing purposes.

JBuilder’s Test Case wizard can automatically install test fixtures if they
provide a constructor that takes an Object argument and contain setUp()
and tearDown() methods. Here is a basic example of a valid fixture:

public class CustomFixture1 {

 public CustomFixture1(Object obj) {
 // code goes here
 }

 public void setUp() {
 // code goes here
 }

 public void tearDown() {
 // code goes here
 }

}

To install a fixture of this type in a new test case, select the fixture in step 3
of the Test Case wizard. The fixture will be instantiated by the test case,
and its setUp() and tearDown() methods will be invoked.

JBuilder provides the following three predefined fixtures for performing
common tasks:

• JDBC fixture

• JNDI fixture

• Comparison fixture

You can also create your own custom test fixtures using the Custom
Fixture wizard.

JDBC fixture

The JDBC fixture, com.borland.jbuilder.unittest.JdbcFixture, can be used
by test cases for managing JDBC connections. Test methods within the test
case can use the getConnection() method to get a JDBC connection. To

U n i t t e s t i n g 13-9

U s i n g p r e d e f i n e d t e s t f i x t u r e s

specify a JDBC connection, use the setUrl() and setDriver() methods. The
runSqlFile() method is used for running SQL script files.

The easiest way to create a JDBC Fixture is by using the JDBC Fixture
wizard. The JDBC Fixture wizard creates a class that extends JdbcFixture.
By extending JdbcFixture, you can specify a JDBC connection to use and
provide other functionality as needed. Here is a summary of some of the
most commonly used methods in JdbcFixture:

• dumpResultSet() dumps the values in a result set to a Writer. Takes a
java.sql.ResultSet and a java.io.Writer as parameters.

• getConnection() returns a java.sql.Connection object defining the JDBC
connection.

• runSqlBuffer() runs a SQL statement contained in a StringBuffer.

• runSqlFile() reads a SQL script from a file and runs it. Takes a String
indicating the location of the file and a boolean as parameters.

• setDriver() sets the Driver property of the JDBC connection. Takes a
String as a parameter.

• setUrl() sets the URL property of the JDBC connection. Takes a String as
a parameter.

• setUsername() sets the username for accessing the JDBC connection.
Takes a String as a parameter.

• setPassword() sets the password for accessing the JDBC connection.
Takes a String as a parameter.

Tip When you create a JDBC fixture using the wizard, it extends JdbcFixture.
You can view the inherited class structure by double-clicking the parent
class node in the structure pane when your JDBC Fixture is open in the
editor or by right-clicking the name of the parent class in the editor and
selecting Find Definition from the context menu.

For more specific information about the UI of the JDBC Fixture wizard,
click the Help button in the wizard.

See also

• Chapter 22, “Tutorial: Working with test fixtures”

JNDI fixture

You can create a JNDI fixture, which is a class that facilitates performing
JNDI lookups, using the JNDI Fixture wizard. The JNDI Fixture wizard is
available on the Test page of the object gallery. For more specific
information about the UI of the JNDI Fixture wizard, click the Help button
in the wizard.

13-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g p r e d e f i n e d t e s t f i x t u r e s

Comparison fixture

A comparison fixture is used for recording output from a test run and
then comparing output from subsequent test runs against previous test
output. A comparison fixture is a class that extends
com.borland.jbuilder.unittest.TestRecorder. The TestRecorder class extends
java.io.Writer, so you can use your comparison fixture anywhere a Writer
is required. You can generate a comparison fixture using the Comparison
Fixture wizard, available from the Test page of the object gallery.

A TestRecorder contains four constants for setting the recording mode:

• UPDATE—The comparison fixture compares new output to an existing
output file, or creates the output file if it does not exist and records
output to it.

• COMPARE—The comparison fixture always compares new output to the
output that already exists.

• RECORD—The comparison fixture records all output, overwriting any
previous output existing in the output file.

• OFF—The comparison fixture is disabled.

Keep in mind that if you change a test case or test suite after test output
has already been recorded by inserting or deleting new string output, you
must reinitialize the data file. Use RECORD instead of UPDATE when your tests
have changed, or delete the existing data file. The data file is a binary file
located in the same directory as your test source files. It has the same
name as your test case.

Here is a summary of some of the most commonly used methods of a
comparison fixture:

• print() prints a string that is passed to it as a parameter.

• println() prints a string that is passed to it as a parameter with a line
break.

• compareObject() invokes the equals() method of an object to compare an
object passed to it to an object that was previously recorded using
recordObject().

• recordObject() records an object so that it can later be compared to
another object using compareObject().

For more specific information about the UI of the Comparison Fixture
wizard, click the Help button in the wizard.

See also

• Chapter 22, “Tutorial: Working with test fixtures”

U n i t t e s t i n g 13-11

C r e a t i n g a c u s t o m t e s t f i x t u r e

Creating a custom test fixture
You may want to write your own custom test fixtures to perform tasks
that need to be done in many of your tests. Your tests can then share your
custom fixture. The Custom Fixture wizard is useful for generating a
skeleton for a test fixture or creating a wrapper for existing test fixture
code. The custom fixture skeleton includes setUp() and tearDown()
methods. You can find the Custom Fixture wizard on the Test page of the
object gallery. For more specific information about the UI of the Custom
Fixture wizard, click the Help button in the wizard.

Working with Cactus
Cactus extends JUnit to provide unit testing of server-side Java code. It is
useful in testing your Enterprise JavaBeans (EJB) and web applications.
JBuilder provides features which make Cactus testing easier.

• Cactus Setup wizard—Configures your project to work with Cactus so
that you can run Cactus tests in the JBuilder IDE.

• EJB Test Client wizard—Helps you to create a Cactus test client for
your EJB.

The primary goal of JBuilder’s Cactus support is to facilitate EJB testing
with Cactus. Testing your EJB with Cactus is discussed in more detail in
“Running and testing an enterprise bean” in Enterprise JavaBeans
Developer’s Guide.

You may also want to use Cactus to test other types of server-side Java
code. Even if testing an EJB is not your goal, you can still use the Cactus
Setup wizard to configure your project for Cactus testing and facilitate
proper deployment of the required files.

Cactus Setup wizard

The Cactus Setup wizard configures your project to use Cactus. This
makes it possible to run Cactus tests within the JBuilder IDE. The wizard
is available by selecting Wizards|Cactus Setup.

To configure your project for Cactus:

1 Select Wizards|Cactus Setup. The Cactus Setup wizard opens.

2 Select the WebApp to which the wizard will add Cactus test support.
You may use the default WebApp, an existing WebApp, or click the
New button to open the Web Application wizard and create a new
WebApp.

13-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

W o r k i n g w i t h C a c t u s

3 Choose the logging settings for the Cactus logs. Specify the locations for
the Cactus server and client logs, or uncheck Enable Logging if you
don’t want any logs.

4 Click Next.

5 Select the archives to deploy on the server and redeploy before each
test. This keeps the archives in sync with the project. If any of the
archives are shown in red with an exclamation point before the name, it
means that the physical file does not yet exist. This is probably because
the archive has not yet been built. It won’t cause any problem to select
one of these archives, as long as you remember to build the archive
before attempting to run Cactus tests.

6 Select a Server runtime configuration. You may create a new one using
the New button.

7 Select a Test runtime configuration. You may create a new one using
the New button.

8 Click Finish. Your project is now configured for use with Cactus.

See also

• “Configuring your project for testing an EJB with Cactus” in Enterprise
JavaBeans Developer’s Guide

Creating a Cactus test case for your Enterprise JavaBean
You may want to use Cactus to test your Enterprise JavaBeans (EJB).
JBuilder provides the EJB Test Client wizard, which can generate three
different types of EJB test clients. One of these is a Cactus test client. To
open the EJB Test Client wizard:

1 Select File|New.

2 Select the Enterprise page of the object gallery.

3 Select EJB Test Client and click OK.

Note The EJB Test Client wizard will not be available if your project is not
properly configured to use a server that can support EJB services.

Testing your EJB is outside the scope of this chapter. This topic is covered
by “Running and testing an enterprise bean” in Enterprise JavaBeans
Developer’s Guide.

See also

• “Running and testing an enterprise bean” in Enterprise JavaBeans
Developer’s Guide

• “Configuring the target application server settings” in Enterprise
JavaBeans Developer’s Guide

U n i t t e s t i n g 13-13

R u n n i n g t e s t s

Running Cactus tests

Running Cactus tests is more complicated than running other types of
unit tests, since you need to make sure you have a properly configured
server, the correct deployment descriptors, and properly configured Test
and Server runtime configurations. Apart from these configuration issues,
the main difference between running a Cactus test and running any other
JUnit test is that for a Cactus test, you first need to start the server.

Once the configuration is correct and the server is running, running
Cactus tests within the JBuilder IDE is similar to running other JUnit tests.
When your project is configured correctly, all you need to do to run
Cactus tests is:

1 Start the server using the Server runtime configuration.

2 Right-click the Cactus test file in the project pane.

3 Select Run Test Using <test configuration> from the context menu. The
test runs in the test runner that’s specified in your Test runtime
configuration.

The various issues involved in configuring your server and any required
deployment descriptors are outside the scope of this chapter. They are
discussed in more detail in Enterprise JavaBeans Developer’s Guide and Web
Application Developer’s Guide.

See also

• “Running and testing an enterprise bean” in Enterprise JavaBeans
Developer’s Guide

• “Configuring the target application server settings” in Enterprise
JavaBeans Developer’s Guide

• “Working with WebApps and WAR files” in Web Application Developer’s
Guide

• “Running tests” on page 13-13

Running tests
Three different test runners are available for running your tests. JBuilder’s
default test runner is called JBTestRunner. If you prefer, you can use
JUnit’s TextUI or SwingUI as your test runner. You specify the test runner
you want to use in your Test type runtime configuration. To select a test
runner:

1 Select Project|Project Properties from the menu.

2 Select the Run page.

13-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

R u n n i n g t e s t s

3 Select an existing Test type runtime configuration and click Edit, or
click New if there is no existing Test type runtime configuration. The
Runtime Configuration Properties dialog box is displayed.

4 Enter a name for the runtime configuration, if needed.

5 Select the Run page of the Runtime Configuration Properties dialog
box.

6 Set the runtime configuration Type to Test.

7 Select your preferred test runner from the Test Runner drop-down list.

8 Click OK to close the Runtime Configuration Properties dialog box.

9 Click OK to close the Project Properties dialog box.

The following sections describe running tests with each of the available
test runners.

See also

• “Setting runtime configurations” on page 7-6

JBTestRunner

JBTestRunner provides a combination of text output and GUI indications
of test status. JBTestRunner displays the current test hierarchy of test
suites, test cases, and their test methods. You can navigate to a test method
simply by clicking on it in the test tree. The cursor is positioned on the test
method in the editor. JBTestRunner is JBuilder’s default test runner.

To run a test, right-click on a test case or test suite in the project pane and
select Run Test from the context menu. Assuming you have not changed
the default test runner in the Project Properties dialog box, the test will be
run using JBTestRunner. If you have changed the default test runner and
want to switch back to JBTestRunner, you can do so by following the steps
for selecting a test runner that were described in “Running tests” on
page 13-13.

When you run tests, the results are displayed in the JBTestRunner page in
the message pane. There are three views within this page: Test Failures,
Test Hierarchy, and Test Output.

As tests run, JBTestRunner displays a progress bar which indicates the
percentage of tests completed. This progress bar is green unless one or
more tests have failed, in which case it is red. JBTestRunner also displays
green check mark icons for successes and red X icons for failures or errors
in the test hierarchy tree. In the case of a failure or error, JBTestRunner
displays a stack on the right side of the Test Failures or Test Hierarchy
page when the node for the failure or error is selected in the tree on the left

U n i t t e s t i n g 13-15

R u n n i n g t e s t s

side. Click on a line in the stack and the point where an assertion failed
will be highlighted in the editor.

As tests run, JBTestRunner’s status bar indicates the number of tests run,
the number of successes, failures, and errors. It also displays the time
elapsed since starting the tests, including the time spent loading the test
harness. The time elapsed is updated as each test completes.

If you right click any node in the Test Hierarchy tree or the Test Failures
tree, a context menu appears which contains Run Selected and Debug
Selected options. Use these options to run or debug a specific test when
investigating a test failure.

Test Hierarchy
The Test Hierarchy view is displayed by default, unless a test has failed.
This view shows a tree listing test suites, test cases, and test methods. Each
node in the tree has an icon next to it which indicates test status. A green
check mark icon indicates a passed test. A red X icon indicates a
failed test. This view is dynamically updated during a test run as the tests
are run. Clicking a node in this tree causes the results for that node to be
displayed in the right pane of the message view and also highlights the
line of code causing a failure in the editor for a failed test or highlights the
first line of a successful test method in the editor.

Test Failures
The Test Failures view is accessed by clicking the middle tab on the left of
the JBTestRunner page. The Test Failures view is displayed by default if a
test has failed. This view displays a line for each test failure in the left
pane. Clicking a line for a test failure displays more information about the
failure in the right pane and also highlights the failure in the editor. If no
tests have failed, this view will be empty.

Test Output
The Test Output view is accessed by clicking the bottom tab on the left of
the JBTestRunner page. This view displays any output generated by the
tests, including exceptions.

13-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

R u n n i n g t e s t s

JUnit TextUI

JUnit’s TextUI is a simple test runner that provides text-only output. JUnit
has been integrated into JBuilder in such a way that when you run tests
using JUnit’s TextUI through the JBuilder IDE, you can simply click a line
of output indicating a test failure in the message view and JBuilder’s
editor opens with the line of code that caused the failure highlighted.

JUnit SwingUI

JUnit’s SwingUI is a test runner that provides a GUI indicating test status
and text messages indicating failures. Although you can run tests using
SwingUI through the JBuilder IDE, you don’t have the same ability to
click a line of text indicating a failure and go right to that line in the editor
that you have when using either JBTestRunner or JUnit’s TextUI. The
advantage of SwingUI is that you can review your test hierarchy and
rerun one single test method at a time.

Runtime configurations

A runtime configuration consists of VM parameters to be used and, in the
case of a test, the test runner to use. To set the properties of a runtime
configuration for running tests, go to Project|Project Properties, open the
Run page, click the New, Copy, or Edit button, and click the Test tab. Here
you can specify VM parameters to use when running your tests and select
a test runner. In addition to the default runtime configuration, you can
define additional runtime configurations by going to The Run page of the
Project Properties dialog box or Run|Configurations. The Test Case and
Test Suite wizards also let you set up a runtime configuration.

Tip You can also run tests using a runtime configuration for applications by
invoking the main() method of the TextUI test runner. This might be useful
if you wanted to write a script that invokes the test runner using
command line arguments.

See also

• “Setting runtime configurations” on page 7-6

Defining a test stack trace filter

A test stack trace filter allows you to specify packages and classes to
exclude from stack traces when running unit tests using JBTestRunner.
Stack trace lines for excluded packages and classes are not displayed. This
lets you concentrate on the stack trace information that’s useful to you.

U n i t t e s t i n g 13-17

D e b u g g i n g t e s t s

To specify a unit testing stack trace filter,

1 Select Project|Project Properties.

2 Select the Class Filters page of the Project Properties dialog box.

3 Select Unit Testing Stack Trace from the drop-down list.

4 Use the Add and Remove buttons to specify the packages and classes to
exclude.

5 Click OK.

The unit testing stack trace filter excludes the following packages and
classes by default.

• junit.framework.*

• java.lang.reflect.Method

• com.borland.jbuilder.unittest.JBTestRunner

• sun.reflect.NativeMethodAccessorImpl

• sun.reflect.DelegatingMethodAccessorImpl

Use the Add and Remove buttons on the Class Filters page of the Project
Properties dialog box to edit this list.

Debugging tests
Debugging unit tests is similar to debugging other code using JBuilder’s
debugger. The only difference is that when debugging a test the Test
Hierarchy and Test Failures tabs from JBTestRunner are displayed in
addition to the regular debugger UI. To debug a test, right-click any test in
the project pane and select Debug Test from the context menu.

Tip When running tests using either JBTestRunner or TextUI, clicking an error
in the test output highlights the line of code causing the failure in the
editor. Clicking again in the left margin of the editor window next to the
highlighted line of code sets a breakpoint on the line. You can then easily
debug to the breakpoint.

Tip You can set a breakpoint on the exception thrown for a test failure. To do
this, go to Run|Add Breakpoint|Add Exception Breakpoint and enter
junit.framework.AssertionFailedError for the Class Name.

See also

• “JBTestRunner” on page 13-14

• Chapter 8, “Debugging Java programs”

13-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-1

C h a p t e r

14
Chapter14Creating Javadoc from API

source files
This is a feature of

JBuilder SE and
Enterprise

Javadoc is a tool created by Sun Microsystems to generate API
documentation in HTML-formatted files. The generated HTML
documentation is derived from class and method level comments that you
enter into your API source files. The comments must be formatted
according to Javadoc standards. For complete information about the
Javadoc tool, go to the Javadoc Tool home page on Sun’s website at http:/
/www.java.sun.com/j2se/javadoc/.

JBuilder includes a number of features to support Javadoc generation. A
wizard creates a documentation node that holds properties for a Javadoc
run. This node is displayed in the project pane. Javadoc can be generated
each time you build your project, using the current properties.

JBuilder also includes these other Javadoc-related features:

• A comment template that fills in parameters based on the class,
interface, method, field, or constructor signature

• A template for adding @todo tags

• Reporting of Javadoc comment conflicts

• A Doc viewer to view the generated Javadoc

• “On-the-fly” Javadoc generation

• Documentation archiving with the Archive Builder

14-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A d d i n g J a v a d o c c o m m e n t s t o y o u r A P I s o u r c e f i l e s

Adding Javadoc comments to your API source files
You can add class and interface-level Javadoc comments as well as
method, constructor and field-level comments. Javadoc comments are
pulled out of your source files by the Javadoc tool and put into
HTML-formatted documentation files.

A Javadoc comment starts with a begin-comment symbol (/**) and ends
with an end-comment symbol (*/). Each comment consists of a description
followed by one or more tags. If desired, you can use HTML formatting in
your Javadoc comments. Follow these suggestions when entering
comments:

• Indent the begin-comment symbol (/**) so that it lines up with the code
being documented.

• Start subsequent lines of the comment with * (an asterisk). Indent these
lines also.

• Start the descriptive text on the line after begin-comment symbol (/**).

• Insert a blank space before the descriptive text or the tag.

• Insert a blank comment line between the descriptive text and the list of
tags.

An example of a Javadoc comment for a method is:

/**
 * Sets this check box’s label to the string argument.
 *
 * @param label a string to set as the new label, or null for no label.
 */

In the generated HTML file, this comment displays as:

Sets this check box’s label to the string argument.

Parameters:
label - a string to set as the new label, or null for no label.

Notice how Javadoc turned the @param tag into a heading. It also added the
hyphen that separates the name of the parameter from its description.
Additionally, it displayed the parameter name using a code font.

When you are writing the descriptive part of the comment, make the first
sentence a summary. It should be a concise and complete description of
the API item. The Javadoc tool copies the first sentence of the comment to
the class, interface, or member summary table.

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-3

A d d i n g J a v a d o c c o m m e n t s t o y o u r A P I s o u r c e f i l e s

Note The Javadoc tool inherits comments for methods that implement or
override other methods. In these cases, you do not need to duplicate
method comments.

For more information on creating Javadoc comments, see “How to Write
Doc Comments for the Javadoc Tool” at http://www.java.sun.com/j2se/
javadoc/writingdoccomments/index.html.

See also

• “Automatically generating Javadoc tags” on page 14-6

• “Javadoc Tags” (Windows platforms) at http://java.sun.com/j2se/1.4/
docs/tooldocs/win32/javadoc.html#javadoctags

• “Javadoc Tags” (Solaris platforms) at http://java.sun.com/j2se/1.4/docs/
tooldocs/solaris/javadoc.html#javadoctags

Where to place Javadoc comments

You can add Javadoc comments for classes, interfaces, methods, fields,
and constructors. Place class and interface comments at the top of the file,
after the import statements and immediately before the class or interface
declaration statement. For example, the class comment for
com.borland.internetbeans.PageProducer.java is:

package com.borland.internetbeans;

import java.io.*;
import java.util.*;
import javax.swing.*;
import javax.servlet.ServletContext;
import javax.servlet.http.*;

/**
 * Generates markup text from a template file, replacing
 * identified spans with dynamic content from Ix
 * components.
 */
public class PageProducer implements Binder, Renderable, Cloneable,
Serializable {
...
}

You can enter class-level comments into the Class Javadoc Fields on the
General page of the Project Properties dialog box. The comments you
enter here will be added to every class or interface you create with a
JBuilder wizard.

14-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A d d i n g J a v a d o c c o m m e n t s t o y o u r A P I s o u r c e f i l e s

Method, field, and constructor comments are placed immediately before
the method signature in the source class file. For example, if your source
code contains the following methods:

 public void addValues(Double valueOneDouble, Double valueTwoDouble) {
 double valueOneDoubleResult = valueOneDouble.doubleValue();
 double valueTwoDoubleResult = valueTwoDouble.doubleValue();
 addResult = (valueOneDoubleResult + valueTwoDoubleResult);
 addStringResult = Double.toString(addResult);
 addResultDisplay.setText(addStringResult);
 }

 public void subtractValues(Double valueOneDouble, Double valueTwoDouble) {
 double valueOneDoubleResult = valueOneDouble.doubleValue();
 double valueTwoDoubleResult = valueTwoDouble.doubleValue();
 subtractResult = (valueOneDoubleResult - valueTwoDoubleResult);
 subtractStringResult = Double.toString(subtractResult);
 subtractresultDisplay.setText(subtractStringResult);
 }

you would add the Javadoc comments immediately before the method
declaration. The resulting methods with Javadoc comments would look
like this. Javadoc comments are in bold-face text.

 /**
 * Adds Value One and Value Two and displays result.
 *
 * @param valueOneDouble The first value.
 * @param valueTwoDouble The second value.
 */
 public void addValues(Double valueOneDouble, Double valueTwoDouble) {
 double valueOneDoubleResult = valueOneDouble.doubleValue();
 double valueTwoDoubleResult = valueTwoDouble.doubleValue();
 addResult = (valueOneDoubleResult + valueTwoDoubleResult);
 addStringResult = Double.toString(addResult);
 addResultDisplay.setText(addStringResult);
 }

 /**
 * Subtracts Value One and Value Two and displays result.
 *
 * @param valueOneDouble The minuend.
 * @param valueTwoDouble The subtrahend.
 */
 public void subtractValues(Double valueOneDouble, Double valueTwoDouble) {
 double valueOneDoubleResult = valueOneDouble.doubleValue();
 double valueTwoDoubleResult = valueTwoDouble.doubleValue();
 subtractResult = (valueOneDoubleResult - valueTwoDoubleResult);
 subtractStringResult = Double.toString(subtractResult);
 subtractresultDisplay.setText(subtractStringResult);
 }

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-5

A d d i n g J a v a d o c c o m m e n t s t o y o u r A P I s o u r c e f i l e s

Javadoc tags
You can use the following tags in your Javadoc comments. Some of the
tags, such as @param or @return are automatically included in a Javadoc run
that is initiated through JBuilder. The wizard used to generate Javadoc
allows you to select several other tags on the Specify doclet command-line
options page. You can also enter other tags into the Additional Options
field on the same page, forcing the wizard to include those comment tags
in the generated files.

The following table lists and describes Javadoc tags. It indicates what
Javadoc doclet the tags will be processed for (not all tags will be processed
by the JDK 1.1 doclet, for example). It also explains what part of your class
file the tag can be applied to. For more information on individual tags, see:

• Windows users - “Javadoc Tags” at http://java.sun.com/j2se/1.4/docs/
tooldocs/win32/javadoc.html#javadoctags

• Solaris users - “Javadoc Tags” at http://java.sun.com/j2se/1.4/docs/
tooldocs/solaris/javadoc.html#javadoctags

Table 14.1 Javadoc tags

Tag Description
JDK 1.1
doclet

Stnd
doclet Kind of tag

@author name Adds an Author entry with the specified name
to the generated docs when the @author option
is selected on the Specify doclet command-line
options page of the wizard used to generate
Javadoc.

X X Overview,
package, class,
interface

{@docRoot} The relative path to the generated document’s
(destination) root directory from any generated
page. The wizard does not automatically set
this option; you need to enter it into the
Additional Options field on the Specify doclet
command-line options page.

X Overview,
package, class,
interface, field

@version
version-number

Adds a Version subheading with the specified
version-number to the generated docs when the
@version option is used on the Specify doclet
command-line options page of the wizard.

X X Overview,
package, class,
interface

@param parameter-name
description

Adds a parameter to the Parameters
subheading. Automatically included in
generated docs.

X X Constructor,
method

@return description Adds a Returns subheading with the description
text. Automatically included in generated docs.

X X Constructor,
method

@deprecated
deprecated-text

Adds a comment indicating that this API has
been deprecated and should no longer be used,
even though it may still work. This option can
be set on the Specify doclet command-line
options page of the wizard.

X X Package, class,
interface, field,
constructor,
method

@exception class-name
description

A synonym for @throws. Automatically
included in generated docs.

X X Constructor,
method

14-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A d d i n g J a v a d o c c o m m e n t s t o y o u r A P I s o u r c e f i l e s

Automatically generating Javadoc tags

JBuilder can automatically generate some of these tags for you. When the
cursor is on a line before a class or interface declaration, typing the

@throws class-name
description

A synonym for @exception. Adds a Throws
subheading to the generated docs with the
class-name of the exception that can be thrown.
Automatically included in generated docs.

X Constructor,
method

@see reference Adds a See Also subheading to the generated
docs. Automatically included in generated
docs.

X X Overview,
package, class,
interface, field,
constructor,
method

@since since-text Adds a Since heading with the specified text to
the generated docs. The wizard does not
automatically set this option; you need to enter
it into the Additional Options field on the
Specify doclet command-line options page.

X X Overview,
package, class,
interface, field,
constructor,
method

@serial field-description Describes a default serializable field. The
wizard does not automatically set this option;
you need to enter it into the Additional
Options field on the Specify doclet
command-line options page.

X Field

@serialField field-name
field-type
field-description

Documents an ObjectStreamField component of
a serializable class serialPersistentFields
member. The wizard does not automatically
set this option; you need to enter it into the
Additional Options field on the Specify doclet
command-line options page.

X Field

@serialData
data-description

Documents the type and order of data in the
serialized form. The wizard does not
automatically set this option; you need to enter
it into the Additional Options field on the
Specify doclet command-line options page.

X Constructor,
method

{@link}
package.class#member
label

Inserts an in-line link with the label as visible
text. Automatically included in the generated
docs.

X Overview,
package, class,
interface, field,
constructor,
method

Table 14.1 Javadoc tags (continued)

Tag Description
JDK 1.1
doclet

Stnd
doclet Kind of tag

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-7

A d d i n g J a v a d o c c o m m e n t s t o y o u r A P I s o u r c e f i l e s

begin-comment symbol (/**) and pressing Enter inserts the following
template into your code:

/**
 * <p>Title: </p>
 * <p>Description: </p>
 * <p>Copyright: Copyright (c) 2001</p>
 * <p>Company: </p>
 * @author
 * @version 1.0
 */

You need to fill in the fields as you wish.

Note This template (for classes and interfaces) can be filled in for a new project
on the Specify General Project Settings page of the Project wizard as
you’re creating the project. You can also change these values at any time
on the General page of the Project Properties dialog box.

When the cursor is before a method, field, or constructor signature, entering
/** inserts the following template. Note that only those tags that are used in
the signature are displayed in the expanded comment template.

/**
 *
 * @param
 * @throws
 * @returns
 */

JBuilder completes the tag for you by filling in the name of the parameter
or exception. For example, for the following method signature:

public void addValues(Double valueOneDouble, Double valueTwoDouble)

entering /** creates the following Javadoc comment:

/**
 *
 * @param valueOneDouble
 * @param valueTwoDouble
 */

Javadoc @todo tags
Javadoc @todo tags are useful for adding reminders about what needs to be
done to an area of code. These tags are placed inside of Javadoc comments.
These @todo tags appear in JBuilder’s structure pane in a ToDo folder.

Figure 14.1 ToDo folder in structure pane

14-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

G e n e r a t i n g t h e d o c u m e n t a t i o n n o d e

To add @todo tags to your code,

1 Type todo at the appropriate indentation level in the editor.

2 Press Ctrl+J to expand the template in your code:

/** @todo */

Some of JBuilder’s wizards generate @todo tags as reminders to add code to
the stub code that the wizard generates.

Conflicts in Javadoc comments

A Javadoc conflict occurs when the tagging in a Javadoc comment does
not match the method signature or if no argument is provided in tags such
as @param. For example, if the method signature contains two parameters,
and the comment only contains one, a conflict is reported.

In JBuilder, Javadoc conflicts are reported at the top of the structure pane
in a folder called Javadoc Conflicts. Expand the folder and click the
conflict to go to the method signature where the conflict occurred.

Figure 14.2 Javadoc conflicts in structure pane

Note Javadoc conflicts are not reported until all syntax errors in the Errors
folder are resolved.

Generating the documentation node
JBuilder’s Javadoc wizard generates a documentation node in the project
pane. This node stores the properties for a Javadoc run. Properties include
the format of the output, what packages are documented, and what
output for those packages is generated. To change Javadoc properties after
you create the node, right-click the node and choose Properties.

When you create the node, you can choose to create Javadoc files every
time you build your project. You can also create Javadoc only on demand
by right-clicking the node and choosing Make.

To display the Javadoc wizard, choose File|New. On the Build page of the
object gallery, double-click the Javadoc icon. You can also choose
Wizards|Javadoc.

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-9

G e n e r a t i n g t h e d o c u m e n t a t i o n n o d e

This wizard contains four steps. Options on the wizard include:

• The format of the Javadoc output.
• The name of the documentation node the wizard generates.
• The output directory.
• When to run Javadoc.
• The packages and scope to document.
• What output files are generated and what tags are processed.

Choosing the format of the documentation

The first step of the wizard is where you choose the formatting of the
Javadoc output. Output is controlled by a doclet, a Java class that specifies
the contents and format of the HTML output files.

Figure 14.3 Choose a doclet page

To choose the formatting of the output files,

1 To create output files in JDK 1.1 formatted Javadoc, choose the JDK 1.1
Doclet option from the Doclet Name drop-down list. This doclet creates
output as HTML but does not include the additional level of detail
provided with the Standard Doclet option. This option corresponds to
the -1.1 Javadoc tag. Note that this doclet is not available when running
Javadoc using JDK 1.4.

2 To create output in JDK 1.4 formatted output, choose the Standard
Doclet option from the drop-down list. This doclet produces API
documentation in HTML format and includes more features than the
JDK 1.1 output option, including:

• Tables of fields and methods for a class or interface.
• Package-level descriptions.

14-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

G e n e r a t i n g t h e d o c u m e n t a t i o n n o d e

• Lists of inherited fields and methods.
• Lists of inner classes.
• A separate index per letter.
• Comments for the @use tag.
• Extensive navigation bar.

For an example of the Standard output, choose Help|Java Reference on
the JBuilder main menu bar. Sun’s JDK API reference documentation is
displayed. It uses the JDK 1.4 doclet for formatting output.

The two doclets use different HTML naming conventions and directory
structures. When displaying Javadoc, the Doc tab first looks for files
formatted using the Standard Doclet. If this type of file is not found,
JBuilder next looks for files formatted using the JDK 1.1 Doclet. For more
information, see “Viewing Javadoc” on page 14-20.

Note The Doclet Name option corresponds to the Javadoc -doclet option. The
-docletpath option is explicitly set by the Javadoc wizard.

Choosing documentation build options

The second step of the wizard is where you choose:

• The name of the documentation node that the wizard generates.
• The output directory.
• How Javadoc output is displayed.
• Javadoc build options.

Figure 14.4 Specify project and build options page

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-11

G e n e r a t i n g t h e d o c u m e n t a t i o n n o d e

To specify project and build options,

1 Enter the name for your documentation node in the Name field. This
name is displayed in the project pane. By default, this is the type of
doclet you selected in the previous step. You can change this to any
descriptive name.

2 Enter the documentation output directory in the Output Directory
field. This is the output path for the HTML files. The wizard uses the
first directory path set on the Documentation tab of the Paths page of
the Project Properties dialog box (Project|Project Properties). If you
have not set a documentation path, the wizard suggests a doc directory
in your project directory and creates it for you.

Use the ellipsis (...) button to browse to a new directory. If the directory
does not exist, JBuilder creates it. You can also choose a previously
selected path from the drop-down list. These paths are other
documentation paths set in your project.

A single project can have multiple Javadoc paths, so that different
packages, for example, can use different Javadoc options. Two projects
should not share the same path. Each node has its own path.

This option corresponds to the -d Javadoc option. The -sourcepath,
-classpath, and -bootclasspath Javadoc options are set by the wizard,
based on project settings.

Note For maintenance purposes, Javadoc output should be kept in its own
directory and not placed in the source or output directories. See
“Maintaining Javadoc” on page 14-22 for more information.

3 Choose the Show Console Output option to display Javadoc warnings
in the message pane as the HTML files are being generated. This
corresponds to the -verbose Javadoc option.

Note The Javadoc build stops if an error occurs. Errors are displayed in the
message pane, regardless of the Show Console Output setting.

4 Choose the Always Run Javadoc When Building The Project option to
generate Javadoc every time you build your project. You may want to
turn this off when developing your project, as this can slow down
compilation significantly.

If you don’t choose this option, you can create Javadoc at any time by
right-clicking the documentation node in the project pane and choosing
Make.

5 Choose the Use Project JDK When Running Javadoc to use the version
of the JDK specified on the Paths page of the Project Properties dialog
box. Otherwise, Javadoc is run using the JDK that hosts JBuilder.

Note The Javadoc wizard uses the value from the Encoding option on the
General page of the Project Properties dialog box.

14-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

G e n e r a t i n g t h e d o c u m e n t a t i o n n o d e

Choosing the packages to document

This step of the wizard is where you choose what packages are
documented and what scope of classes and members to surface in the
documentation.

Figure 14.5 Select packages and visibility level page

To select the package and visibility level,

1 Check the Entire Project option to document all packages in your
project. This is on by default, so that all packages in your project are
documented. Turn this option off to choose individual packages to
document.

Note Source files in the default package are always documented.

2 Turn off the Entire Project option to document individual packages.
The packages in your project are then displayed in the Packages To
Document list.

• Choose the Add button to add packages to this list. This displays the
Select Packages To Document dialog box where you can choose
individual packages in your project.

• Select a package and choose the Remove button to remove a single
package from the list.

• Choose the Remove All button to remove all packages from the list.

3 Choose one of the Lowest Visibility To Document options to select the
scope of classes and members to include in the documentation:

• Public - Includes only public classes and members in the
documentation. This corresponds to the Javadoc -public option.

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-13

G e n e r a t i n g t h e d o c u m e n t a t i o n n o d e

• Protected - Includes only protected and public classes and members
in the documentation. This corresponds to the Javadoc -protected
option.

• Package - Includes only package, protected and public classes and
members in the documentation. This corresponds to the Javadoc
-package option.

• Private - Includes all classes and members in the documentation,
except those with private visibility. This corresponds to the Javadoc
-private option.

Note If a source file has no elements with Javadoc comments that meet the
lowest visibility requirement, the Javadoc tool doesn’t generate an
HTML file for that class.

Specifying doclet command-line options

The last step of the wizard is where you define what output files are
generated and what tags are processed. All selections on this page are
optional; none are required for Javadoc to be generated.

Figure 14.6 Specify doclet command-line options page

To specify command-line options,

1 Choose the Generate Hierarchy Tree option to generate the hierarchy
tree for all classes in all packages. The hierarchy tree is a list of the
hierarchies for all packages, classes, and interfaces in the
documentation set. For the Standard doclet, a hierarchy tree is
generated on a package-level basis. The hierarchy tree is stored in
overview-tree.html in the root of your documentation path.

14-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

G e n e r a t i n g t h e d o c u m e n t a t i o n n o d e

2 Choose the Generate Navigation Bar option to generate a navigation
bar at the top of each HTML output file. This bar includes links to the
next and previous package and class, the overview of all packages in
the documentation set, the tree file, the index and the
Javadoc-generated help topic.

3 Choose the Generate Index option to generate an index entry for each
method and field, each package, each class, and each interface. The
index is stored in index-all.html in the root of your documentation path.
When this option is off, it corresponds to the -noindex Javadoc option.

For JDK 1.4 Javadoc output, you can create links to index entries by
letter. Choose the Separate Index Per Letter option. This corresponds to
the -splitindex Javadoc option. The option is ignored for the JDK 1.1
doclet type, as the JDK 1.1 doclet always generates a separate index per
letter.

4 Choose the Generate “Use” page option to generate one Use page for
each package and a separate one for each class and interface. The
package use file is called package-use.html; the class use file is class-use/
classname.html. This page describes what packages, classes, methods,
constructors, and fields use any part of the given class, interface, or
package. The option is ignored for the JDK 1.1 doclet type.

5 Choose the @author option to generate documentation for @author tags
in your source code. This option adds the author’s name to the
generated Javadoc. One name or multiple names can be included in a
single tag.

6 Choose the @version option to generate documentation for @version
tags in your source code. This option adds the code version number to
the generated Javadoc. This tag can apply to both a class or element in a
class.

7 Choose the @deprecated option to generate documentation for
@deprecated tags in your source code. This option adds a comment that
the specified API element will be removed in a future version of the
API.

8 Choose the Generate @deprecated List option to generate a list of
@deprecated items. When this option is off, it corresponds to the
-nodeprecatedlist Javadoc option.

9 Enter any additional options into the Additional Options field. These
options are added to the command-line before the list of packages or
files. Any options you set in this field override any options previously
set in the wizard. Note that if you specify the -locale option, it always
appears as the first command-line option.

10 Click Finish to create the documentation node.

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-15

G e n e r a t i n g t h e d o c u m e n t a t i o n n o d e

The following table lists options that are not set by the wizard. These
options can be set in the Additional Options field. The table indicates what
Javadoc doclet the options will be processed for (not all options will be
processed by the JDK 1.1 doclet, for example). For more information about
Javadoc options, see:

• Windows users - “Javadoc options” at http://java.sun.com/j2se/1.4/
docs/tooldocs/win32/javadoc.html#javadocoptions

• Solaris users - “Javadoc options” at http://java.sun.com/j2se/1.4/docs/
tooldocs/solaris/javadoc.html#javadocoptions

Table 14.2 Options not set in the wizard

Option Description
JDK 1.1
doclet

Stnd
doclet

-overview path\filename Specifies the file containing the text for the overview
documentation.

X X

-help Displays the Javadoc help, which lists the Javadoc and
command-line options.

X X

-Jflag Passes the flag directly to the runtime JDK that runs
Javadoc. Do not include a space between the J and the
flag. Use this option to increase memory for Javadoc, for
example, -J-Xms64m. (The -Xms flag sets the size of initial
memory. You can use it in conjunction with the -Xmx
flag to increase available memory.)

X X

-locale
language_country_variant

Specifies the locale that Javadoc uses when generating
documentation. Javadoc chooses the resource files of
the specified locale for messages, such as strings in the
navigation bar, headings for lists and tables, help file
contents, and comments in the style sheet. It also
specifies sorting for alphabetical lists.

X X

-doctitle title Specifies the title to be placed near the top of the
overview summary file below the upper navigation bar.

X

-windowtitle title Specifies the title to be placed in the <title> tag. X

-header header Specifies the header text to be placed at the top of each
HTML-generated file to the right of the upper
navigation bar.

X

-footer footer Specifies the footer text to be placed at the bottom of
each HTML-generated file, to the right of the lower
navigation bar.

X

-bottom text Specifies the text to be placed at the bottom of each
HTML-generated file below the lower navigation bar.

X

-link extdocURL Creates links to already existing Javadoc
documentation for external referenced classes.

X

-linkoffline
extdocURL packagelistLoc

Creates links to already existing Javadoc
documentation for external referenced classes, where
the package list file does not exist at the extdocURL
location. (See -link.)

X

-group groupheading
packagepattern:package pattern:...

Separates packages in the overview list into the
specified groups.

X

14-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

G e n e r a t i n g t h e o u t p u t f i l e s

Important If you enter options in the Additional Options field that have already been
set in the wizard, your previous choices are overwritten.

Generating the output files
Once you’ve set all options in the wizard and clicked the Finish button,
the documentation node is created in the project pane.

Figure 14.7 Documentation node in project pane

HTML files are not available until you generate them. To generate the
HTML output files, you can,

• Build your project if you set the Always Run Javadoc When Building
The Project option on the Specify project and build options page of the
wizard.

• Right-click the documentation node and click Make. This option only
builds Javadoc, it does not build your project. To delete HTML files in
the configured directory, choose Clean. Choose Rebuild to do a Clean,
and then a Build.

-nosince Does not include comments in @since tags.

-nohelp Does not include the Help link in the upper and lower
navigation bars.

X

-helpfile
path\filename

Specifies the path of an alternate help file for the Help
link in the navigation bar.

X

-stylesheetfile
path\filename

Specifies the path of an alternate stylesheet file. X

-serialwarn Generates compiler warnings for missing @serial tags. X

-charset name Specifies the HTML character set for the generated
documentation.

X

-doencoding name Specified the encoding of the generated documentation. X

Table 14.2 Options not set in the wizard (continued)

Option Description
JDK 1.1
doclet

Stnd
doclet

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-17

G e n e r a t i n g t h e o u t p u t f i l e s

Output is displayed on the Compiler tab of the message pane if you set the
Show Console Output option on the Specify project and build options
page of the wizard.

Javadoc generates a set of HTML formatted files, based on the selected
properties and placed in the selected output directory, usually the doc
directory. Output files for the Standard Doclet include:

• A classname.html file for each class or interface in your project that
contains documentation for the class or interface.

• A package-summary.html file for each package in your project that lists the
classes and the package and provides overview information.

• An overview-summary.html file for the entire set of packages that is the
documentation home page. This file is created only if your project
contains two or more packages and you use the -overview option in the
Additional Options field on the Specify doclet command-line options
page of the wizard used to generate Javadoc.

• An overview-tree.html file for the class hierarchy for the entire set of
packages.

• A package-tree.html file for the class hierarchy for each package.

• A package-use.html file for each package, class, and interface that lists
what packages, classes, methods, constructors, and fields use any part
of the given package, class, or interface. The @use option on the Specify
doclet command-line options page of the wizard has to be set in order
to generate this file.

• A deprecated-list.html file for all deprecated names. The @deprecated
option on the Specify doclet command-line options page of the wizard
has to be set in order to generate this file.

• A serialized-form.html file containing information about serializable
and externalizable classes. The @serial, @serialField and @serialData
tags need to be entered into the Additional Options field on the Specify
doclet command-line options page of the wizard in order to generate
this file.

• An index-*.html file that lists all class, interface, constructor, field, and
method names, in alphabetical order. The Generate Index option on the
Specify doclet command-line options page of the wizard has to be set in
order to generate this file.

14-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

G e n e r a t i n g t h e o u t p u t f i l e s

Javadoc also generates a number of support files, including:

• A help-doc.html file that describes how to use the navigation bar.

• An index.html file that creates the HTML frames.

• A number of *-frame.html files that list packages, classes, and interfaces
used when HTML frames are displayed.

• A package-list file that is a text file, used by the -link options. It is not
accessible through any links.

• A stylesheet.css file that controls the HTML display, based on the
doclet you selected in the Choose a doclet page of the wizard.

For more information about the files that are generated, see “Generated
Files” at:

• Windows users: http://java.sun.com/j2se/1.4/docs/tooldocs/win32/
javadoc.html#generatedfiles

• Solaris users: http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/
javadoc.html#generatedfiles

Generating additional files

Javadoc automatically generates many output files for source .java files.
You can also generate additional output files, such as package-level
descriptive files and overview comment files, from auxiliary files.

Package-level files
Each package can have its own documentation comment contained in its
own source file. Javadoc merges this comment file into the package
summary page it generates for each package in your project. This file must
be called package.html, and it must be located in the package directory in
the source tree along with the package’s class files. Javadoc automatically
looks for this filename in this location.

The package.html file must contain a single documentation comment
written in HTML. Do not include the Javadoc begin and end comment
tags (/** and */). Do not put a title or any other text between the <body> tag
and the first sentence. The first sentence should be a summary.

JBuilder provides a package file editor that allows you to easily create,
edit or remove the package.html file for individual packages in your
project. The package file editor places the file in the correct location for
Javadoc processing.

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-19

G e n e r a t i n g t h e o u t p u t f i l e s

To use this editor,

1 Open your project. In the project pane, select the package you want to
create a package file for.

2 Double-click the package. The package file editor is displayed on the
Package tab of the content pane.

3 Enter any header text for the package.html file in the Heading section of
the editor. This section generally contains copyright and version
information. Javadoc will not process text in this section; it is left in a
comment tag in the package.html file.

4 Enter body text in the Body section. The first sentence should be a
concise one-sentence summary of the package. Follow this sentence
with a complete description of the package. You can use the template to
enter links to other packages and/or related documentation.

When you generate output files, the one-sentence description is displayed
at the top of the package file. The remainder of the package description
follows the Class Summary list. Note that you can create individual
package.html files for each package in your project.

For more information about the package-level file, see “Package Comment
Files” at:

• Windows users: http://java.sun.com/j2se/1.4/docs/tooldocs/win32/
javadoc.html#packagecomment

• Solaris users: http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/
javadoc.html#packagecomment

14-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

V i e w i n g J a v a d o c

Overview comment files
Each project can have its own overview comment file contained in its own
source file. Javadoc merges this comment file into the overview page it
generates for each all the packages in your project. You can name the file
anything you like, usually overview.html. You can place it anywhere,
usually at the top of your source tree.

The overview.html file must contain a single documentation comment,
written in HTML. Do not include the Javadoc begin and end comment
tags (/** and */). Do not put a title or any other text between the <body> tag
and the first sentence. The first sentence should be a summary.

For more information about the overview comment file, see “Overview
Comment Files” at:

• Windows users: http://java.sun.com/j2se/1.4/docs/tooldocs/win32/
javadoc.html#overviewcomment

• Solaris users: http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/
javadoc.html#overviewcomment

Viewing Javadoc
There are several ways to view Javadoc once it has been built.

To view Javadoc for the entire project, expand the documentation node
and double-click index.html (for output using the Standard Doclet) or
index-1.html (for output using the JDK 1.1 Doclet).

Figure 14.8 Expanded documentation nodes

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-21

V i e w i n g J a v a d o c

The index file opens in the View pane of the AppBrowser.

• For Standard Doclet output, packages and classes are listed in the left
frame. The right frame displays summary tables.

Figure 14.9 Index file output from Standard Doclet

• For JDK 1.1 Doclet output, an alphabetical index is displayed.

Figure 14.10 Index file output from JDK 1.1 Doclet

You can also view Javadoc for an individual file by choosing the file in the
project pane and selecting the Doc tab. To view Javadoc for an individual
file from a UML class diagram, right-click the class name in the diagram
and choose View Javadoc. The HTML file is displayed in the Help viewer.

For all views, you can use the upper or lower navigation bar, as well as
links in the summary tables to navigate through the documentation.

14-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

M a i n t a i n i n g J a v a d o c

How JBuilder displays Javadoc

When you choose the Doc tab to display Javadoc for a source file open in
the editor, JBuilder first searches for HTML formatted standard or JDK 1.1
output, using the documentation path defined on the Doc tab of the
Project Properties Paths page (Project|Project Properties).

• If only JDK 1.1 formatted output exists, that output is displayed.

• If both JDK 1.1 and standard formatted output exist, the Standard
Doclet output is displayed.

If neither exists, JBuilder displays “on-the-fly” Javadoc that is generated
directly from comments in the API source file. This allows up-to-date
Javadoc to always be displayed for a source file, even if you have not yet
created Javadoc. No links are available in this view.

Figure 14.11 On-the-fly Javadoc output

Maintaining Javadoc
The advantage of creating Javadoc in its own output directory, such as a
doc directory, is that you can easily maintain it. To delete the HTML files in
the documentation output directory, right-click the documentation node
and choose Clean. The HTML files and the CSS files are removed.
However, the directory structure is not deleted. Choosing Rebuild will
clean the directory first and then rebuild the HTML files.

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-23

C h a n g i n g p r o p e r t i e s f o r t h e d o c u m e n t a t i o n n o d e

Changing properties for the documentation node
Once the documentation node has been created, you can change node
properties, including the name of the node, the output directory, and
when Javadoc is generated. To change properties, right-click the
documentation node in the project pane and choose Properties. In the
Properties dialog box, choose the Node tab to change properties for the
node. Choose the Javadoc tab to change what packages are documented.
Choose the Doclet tab to change the doclet options.

Changing node properties

Use the Node tab of the Properties dialog box to change properties for the
node. You can change the following options:

• Node name

• Output directory

• Display of console output

• When Javadoc is generated

• Which JDK to use (the project JDK or the one JBuilder is hosted on)

The Node page looks like this:

For more information, see “Choosing documentation build options” on
page 14-10.

14-24 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C h a n g i n g p r o p e r t i e s f o r t h e d o c u m e n t a t i o n n o d e

Changing Javadoc properties

Use the Javadoc tab of the Properties dialog box to change what packages
are documented. You can change the following options:

• Packages to document

• Lowest visibility to document

The Javadoc page looks like this:

For more information, see “Choosing the packages to document” on
page 14-12.

Changing doclet properties

Use the Doclet tab of the Properties dialog box to change what options and
tags are documented. You can choose:

• If the hierarchy tree file is generated

• If the navigation bar at the top of each generated file is displayed

• If an index is generated

• What tags are documented

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-25

C r e a t i n g a d o c u m e n t a t i o n a r c h i v e f i l e

The Doclet page looks like this:

For more information, see “Specifying doclet command-line options” on
page 14-13.

Creating a documentation archive file
After your final Javadoc run, you can use the Archive Builder to create a
documentation JAR file. This type of JAR file contains all files in the
project’s documentation path directories, typically the doc directory. To
create a documentation archive,

1 Choose Wizards|Archive Builder.

2 On the Select an archive type page of the Archive Builder, choose
Documentation from the Archive type drop-down list. The Archive
Builder looks like this:

14-26 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g a d o c u m e n t a t i o n a r c h i v e f i l e

3 Click Next to go to the next step.

4 Enter the name for the Documentation node in the Name field. This
node is displayed in the project pane when you click Finish.

5 Enter the name of the JAR file in the File field. This file should have a
.jar extension. By default, it is placed in the root directory of your
project.

6 Click Compress The Contents Of The Archive if you want the archive to
be compressed. Use this option to make the JAR file as small as
possible.

7 Click Always Create Archive When Building The Project to create the
documentation JAR file each time you choose Make or Build.

This page of the Archive Builder should look like this:

8 Click Finish to close the wizard and create the DocumentationArchive
node in the project pane. The project pane looks like this:

9 Choose Project|Make Project to make the project and create the JAR
file.

The documentation JAR file is placed in the directory specified in the
Archive Builder.

C r e a t i n g J a v a d o c f r o m A P I s o u r c e f i l e s 14-27

C r e a t i n g a c u s t o m d o c l e t

You can also create a source archive for the source files in your project
using the Source archive type on the Select an archive type page of the
Archive Builder.

For more information on using the Archive Builder, see “Deploying with
the Archive Builder” on page 15-17.

Creating a custom doclet
You can create a custom doclet by extending the Javadoc wizard using the
OpenTools API. For an example of a custom doclet, open the project
Doclet.jpx in the samples/OpenToolsAPI/wizards/doclet folder of your
JBuilder installation. A custom doclet does not need to produce HTML
files. For example, custom tags can be used in conjunction with the
Javadoc tool’s ability to parse source files. The doclet could then generate
XML files or additional Java files. The custom doclet must be placed in the
<jbuilder>/doclet directory.

For more information about the OpenTools API, see “JBuilder OpenTools
basics” in Developing OpenTools.

14-28 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g J a v a p r o g r a m s 15-1

C h a p t e r

15
Chapter15Deploying Java programs

The Archive Builder and
Native Executable Builder

are features of JBuilder
SE and Enterprise

Deploying a Java program consists of bundling together the various Java
class files, image files, and other files needed by your program, and
copying them to a location on a server or client computer where they can
be executed. You can deliver the files separately, or you can deliver them
in compressed or uncompressed archive files.

Note Throughout this document, any reference to a Java “program” implies a
Java application, applet, Java Bean, or Enterprise Java Bean.

JBuilder SE and Enterprise editions provide the Archive Builder which
assists you in deploying your program. In addition, the Native Executable
Builder bundles an application JAR file with native executable wrappers
for faster deployment. JAR files can also be created at the command line
using Sun’s jar tool which is included in the JDK. JBuilder’s Archive
Builder simplifies deployment by automatically gathering classes,
resources, and libraries that your program needs and deploying the files
to a compressed or uncompressed ZIP or JAR file. It also creates the JAR
file’s manifest. The Archive Builder creates an archive node in your
project, allowing easy access to the archive file and the manifest. At any
time during development, you can make the archive file, rebuild it, or
reset its properties. You can also view the contents of the archive, as well
as the contents of the manifest file. See “Deploying with the Archive
Builder” on page 15-17 for more information.

The first step in deploying any program is to identify which project and
library contents need to be included in the archive. This helps you
determine what classes and resources, as well as dependencies, to include.
Including all classes, resources, and dependencies in your archive creates
a large archive file. However, you don’t need to provide your end-user
with other files as the archive contains everything you need to run the
program. If you exclude classes, resources, or dependencies, you’ll need to
provide them to your end-user separately.

15-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g t o J a v a a r c h i v e f i l e s (J A R)

Deployment is a complex and advanced subject, requiring study to fully
comprehend. JBuilder’s Archive Builder reduces this complexity and
helps you create an archive file that meets your deployment requirements.

See also

• “Trail: Jar Files” in the Java Tutorial at http://java.sun.com/docs/books/
tutorial/jar/index.html

• “Using JAR Files: The Basics” at http://java.sun.com/docs/books/
tutorial/jar/basics/index.html

• Step 16 of the JBuilder tutorial, “Building a Java text editor” in
Designing Applications with JBuilder

Note This document assumes you already understand the distinction between
an applet (a program that runs within another context, typically a web
browser) and an application (a stand-alone application that contains a
main() method). For information on applets, browser issues, and JDK
support, see the “Browser issues” topic in “Working with applets” in the
Web Application Developer’s Guide.

Deploying to Java archive files (JAR)
Java programs can consist of many class files, plus various resource,
property, and documentation files. A large program may consist of
hundreds or even thousands of these files. Once your program is
completed and ready to deploy, you need a convenient way to bundle all
the classes and other files it uses into a single deployment set.

You can deploy the files individually or put them all into one easily
deliverable archive file. You might even put a large program into a few
archive files representing libraries and main programs. Compressed
archive files give you the advantage of faster applet download time and
less space required by your files on target server or system, and the
disadvantage of slightly slower runtime speed.

The most efficient way to deliver, or deploy, a Java program is in a
compressed JAR file. A JAR file also contains a manifest file and,
potentially, signature files, as defined in the Manifest Specification. Some
of the JAR’s more advanced features, such as package sealing, package
versioning, and electronic signing are made possible by the manifest file.

A JAR file (.jar) is basically a ZIP file with a different extension and with
certain rules about internal directory structure. JavaSoft used the
PKWARE ZIP file format as the basis for JAR file format.

Note JAR files are supported only in JDK 1.1 or later browsers. If you are
deploying an applet to a JDK 1.0.2 browser, you need to use a ZIP archive
file.

D e p l o y i n g J a v a p r o g r a m s 15-3

D e p l o y i n g t o J a v a a r c h i v e f i l e s (J A R)

In addition to the class and resource files (placed in a package-appropriate
directory structure), a JAR file must contain a manifest file and possibly
class signature files.

Although you can technically place anything you want into an archive, the
Java VM only looks for class files.

The HTML file from which an applet is loaded does not come from the
archive. It is a separate file on the server. However, the JavaBeans
specification indicates that HTML files documenting a bean can be placed
into the archive.

Understanding the manifest file

The manifest for a JAR file is a text-based file that includes information
about some or all of the classes contained in that JAR file. In Java 2, it also
contains information about which class in the JAR file is the runnable
class.

The manifest file for any JAR file must be called manifest.mf and must be in
the meta-inf/ directory in the JAR file.

The default manifest file generated by the Archive Builder, available in
JBuilder SE and Enterprise editions, puts the following two headers at the
top of the file.

• Manifest-Version: 1.0

Tells you that the manifest’s entries take the form of “header:value”
pairs and that it conforms to version 1.0 of the manifest specification.

• Main-Class: class-name

This header is used for Application archive types. It indicates what
class runs the application: the class containing the method public static
void main(String[] args).

15-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g t o J a v a a r c h i v e f i l e s (J A R)

The Main-Class header enables you to run your application from the JAR
file using the -jar option to the Java Tools which launches the Java
application from a command line.

There are other headers you can add to your manifest file which give you
additional JAR file functionality, enabling the JAR file to be used for a
variety of purposes.

See also

• “Understanding the manifest” at http://java.sun.com/docs/books/
tutorial/jar/basics/manifest.html

• “Special purpose manifest headers” at http://java.sun.com/docs/books/
tutorial/jar/basics/manifest.html#special-purpose

• “JAR Manifest” at http://java.sun.com/j2se/1.4/docs/guide/jar/
jar.html#JAR Manifest

• “JAR Manifest - Main Attributes” at http://java.sun.com/j2se/1.4/docs/
guide/jar/jar.html#Main Attributes

• “Command-line tools” at http://java.sun.com/products/js2e/1.4/docs/
tooldocs/tools.html#basic

• “JAR Guide” at http://java.sun.com/j2se/1.4/docs/guide/jar/
jarGuide.html

Deployment strategies

There are two basic deployment strategies for delivering your application:

• Distribute the redistributable libraries with your JAR file and include
them on the CLASSPATH at runtime, rather than putting the required
classes from those libraries inside the JAR file. This is the easiest way to
deploy and creates the smallest program JAR file. This is a reasonable
choice, and one you might make if you are delivering multiple
applications or applets to the same location and want them to share the
libraries.

See the files, <jbuilder>/license.html and <jbuilder>/redist/deploy.html,
for information about what you may or may not redistribute under the
JBuilder product license.

• Create a JAR file using Sun’s jar tool, available in the JDK, or JBuilder’s
Archive Builder, available in SE and Enterprise editions. JBuilder’s
Archive Builder provides many options for gathering the classes,
resources, and libraries your program needs. The options you choose
depend on your deployment requirements, including space
considerations, whether your program is an applet or a stand-alone

D e p l o y i n g J a v a p r o g r a m s 15-5

U s i n g t h e J D K J a v a A r c h i v e T o o l

application, and how your users install your program. See “Deploying
with the Archive Builder” on page 15-17.

The deployment process in JBuilder can be summarized into the following
basic steps:

1 Create and compile your code in JBuilder.

2 Create a JAR file using Sun’s jar tool or JBuilder’s Archive Builder.

3 Create an install procedure.

4 Deliver your JAR file, all necessary redistributable JAR files, and the
installation files.

See also

• Sun’s jar tool at http://java.sun.com/products/js2e/1.4/docs/
tooldocs/tools.html#basic

• “Deployment quicksteps” on page 15-10

• “Deploying with the Archive Builder” on page 15-17

Using the JDK Java Archive Tool
Sun provides a way to create and modify a JAR file from the command
line using the Java Archive Tool (jar tool) provided as part of the Java
Development Kit. The jar tool is invoked with the jar command using the
following basic format:

jar cf jar-file input-file(s)

For more information on creating and modifying JAR files, see “Updating
the contents of a JAR file” on page 15-7.

See also

• “Using JAR Files: The Basics” at http://java.sun.com/docs/books/
tutorial/jar/basics/index.html

Running a program from a JAR file

You can run a program archived in a JAR file from the command line.
Add the JAR file to the CLASSPATH, for example, CLASSPATH=user/username/
jbproject/myapp/myjar.jar, or add it to the -cp or -classpath command line
option to java.exe. Give the full package name to the class.

java -classpath user/username/jbproject/myapp/myjar.jar mypackage.myclassname

In version 1.2 and above of the JDK software, you can add -jar to the java
command to tell the interpreter that the application is packaged in the JAR

15-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U s i n g t h e J D K J a v a A r c h i v e T o o l

file format. The Java VM gets the information from the Main-Class: header
in the manifest about which class to run.

java -jar jar-file

For example,

java -jar user/username/jbproject/myapp/myjar.jar

Of course, if you run the application from the same directory as the JAR
file, you only have to type the following:

java -jar myjar.jar

See also

• “Running JAR-packaged software” at http://java.sun.com/docs/books/
tutorial/jar/basics/run.html

• “Modifying a manifest file” at http://java.sun.com/docs/books/tutorial/
jar/basics/mod.html

• “Updating a JAR file” at http://java.sun.com/docs/books/tutorial/jar/
basics/update.html

Viewing archive file contents

To view a listing of the JAR file contents with the jar tool, use the
command:

jar -tf jar-file

This also works for ZIP files:

jar -tf zip-file

Note You can also view archive contents in JBuilder. Add a JAR file to your
project, double-click the JAR file in the project pane, expand the nodes in
the structure pane, and double-click a file to open it in the editor. JAR files
are read-only in the editor.

The JAR utility has many other uses. To see these, type jar for
command-line help.

You can use most PKWARE-compatible ZIP file tools to examine or even
modify JAR files. If the tool actually requires a ZIP extension, you can
temporarily rename the JAR to ZIP.

Note Versions of WinZip prior to 6.3 contain a bug preventing them from
extracting or viewing files from a valid JAR file. Later versions solve this.

D e p l o y i n g J a v a p r o g r a m s 15-7

D e p l o y m e n t i s s u e s

Updating the contents of a JAR file

Java 2 has a u option to jar.exe which you can use to update the contents
of an existing JAR file by adding files. To use this command, type:

jar uf jar-file input-file(s)

where,

u = update an existing JAR file
f = JAR file to update is on the command line
jar-file = name of the existing JAR file to be updated
input-file(s) = space-deliminated list of files to add

Any files already in the archive having the same path name as a file being
added are overwritten.

You can also use the u option with the m option to update an existing JAR
file’s manifest:

jar umf manifest jar-file

where,

m = update the JAR file’s manifest
manifest = name of manifest whose contents you want to merge into the
manifest of the existing JAR file

See also

• “Modifying a manifest file” at http://java.sun.com/docs/books/tutorial/
jar/basics/mod.html

• “Updating a JAR file” at http://java.sun.com/docs/books/tutorial/jar/
basics/update.html

• “How classes are found” at http://java.sun.com/j2se/1.4/docs/tooldocs/
findingclasses.html

• The “JAR Files Trail” in the Java Tutorial at http://java.sun.com/docs/
books/tutorial/jar/

Deployment issues
The following questions need to be answered to determine the best
deployment strategy:

• Is everything you need on the class path?

• Does your program rely on JDK 1.1.x or Java 2 (JDK 1.2 and above)
features?

15-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y m e n t i s s u e s

• Does the user already have the non-JDK Java libraries you use installed
locally?

• Is this an applet or an application?

• Are there download time and/or server disk space limitations?

Is everything you need on the class path?

Deployment problems are primarily about not having everything you
need in the JAR file or on the class path. If you haven’t added the required
classes from a particular library to the JAR file, then make sure that the
redistributable libraries are specified in the -classpath option of the Java
command line or in your CLASSPATH environment variable. The -classpath
option is the recommended way since you can set the class path
individually for each application without affecting other applications and
other applications can’t modify its value.

Tip JBuilder tells you what your class path is when you run from the IDE.
Mirror that at the command line and your program should work.

How you set the CLASSPATH environment variable depends on which
operating system you are using.

See also

• “Setting the CLASSPATH environment variable for command-line
tools” on page B-2

• “Setting the class path” at http://java.sun.com/j2se/1.4/docs/tooldocs/
tools.html

Does your program rely on JDK 1.1.x or Java 2 (JDK 1.2 and
above) features?

If you are developing an applet, this might be an issue as some users may
be using web browsers which have not been updated to support applets
written with JDK 1.1.x or later features, such as Swing. See “Working with
applets” in the Web Application Developer’s Guide for more information.

JDK 1.0.2-compliant browsers do not support JAR archives, therefore if
you have written a JDK 1.0.2-compliant applet and want to deploy it, be
sure to create a ZIP archive format.

D e p l o y i n g J a v a p r o g r a m s 15-9

D e p l o y m e n t i s s u e s

Does the user already have Java libraries installed locally?

If your program uses components that rely on non-JDK libraries, you need
to supply them to the user in the JAR file. You’ll find the JBuilder
redistributable files in the <jbuilder>/redist/ directory. All JDK
redistributable files are in the <jbuilder>/<jdk>/lib/ and <jbuilder>/<jdk>/
jre/lib/ directories. <jdk> represents the name of the JDK directory.

Note When deploying with JBuilder’s Archive Builder, available in SE and
Enterprise editions, you can include these libraries by selecting the
Include Required Classes And All Resources option on Step 4 of the
wizard. This option ensures that the required classes, as well as all
resources (including those from third-party libraries), are included in your
program’s JAR file. The Archive Builder never includes the JDK in your
archive. It assumes that the JDK classes already exist on the target
computer in the form of an installed JDK, Java runtime environment, or
Java Plug-in or that you are providing it in your installation. See
“Deploying with the Archive Builder” on page 15-17.

If you are certain that your users have these archives in their environment,
either because the users already have them installed, or because you have
provided it to them using some kind of installation process, then you can
deliver applications and applets that do not have to contain these
packages.

If you are not certain your users have these libraries, you need to provide
them. This is particularly true in the case of applet deployment. When you
deploy your applet, you need to deploy these libraries and any other
needed resources to the server.

Important In JDK 1.1.x, the Swing/JFC classes were not delivered as part of the JDK.
If you are writing programs that use any of these JDKs, you must
download and deliver swingall.jar which contains those files.

See also

• “Redistribution of classes supplied with JBuilder” on page 15-15

Is this an applet or an application?

Your deployment strategy for applications is different from applets. From
strictly a deployment standpoint, the main difference between the two is
as follows:

• For an application, your user needs to use java.exe (from the Java
Runtime Environment) to run the classes or JAR files you have
provided, either directly from the server or after installing them locally.
If the user does not have the necessary JRE files, you must include them
in your deployment set.

15-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y m e n t q u i c k s t e p s

• For an applet, you assume the user is using an Internet browser or an
applet viewer and that you have an HTML page containing an <applet>
tag that references the classes you want to run. In this case, you must
make sure the user’s browser supports the version of the JDK that you
used to develop your applets, and if not, provide them with the correct
Java Plug-in from Sun to use with their browser. For more information,
see “Working with applets” in the Web Application Developer’s Guide.

Important Before you plan to use the Java Plug-in from Sun, be sure to read all
their documentation on the issues involved. There are several versions
of the Java Plug-in and the HTML Converter. Because the plug-in
versions are incompatible with each other, you can only have one
plug-in installed at a time. Use of the Java Plug-in is recommended only
in a controlled environment, such as an intranet situation, where you
know which browser version is being used and which JDK it supports.

For more information, see the Java Plug-in, found at http://
java.sun.com/products/plugin/.

Download time

One of the first questions you have to answer is whether to place your
program into an archive. The biggest factors in this decision are download
time and program size, especially for applets.

One of the advantages of using the Archive Builder, available in JBuilder
SE and Enterprise editions, to create an archive is that only the necessary
files are included. The Archive Builder identifies all of the classes the
project needs to use, and bundles them into one archive. This allows for
efficient download time, disk usage, and network socket consumption
when the application or applet is launched from a browser.

Until you become more familiar with Java classes and their dependencies,
your JAR files may need to be larger to make sure everything you need is
included. As your knowledge increases, you’ll be able to trim down the
size of your JAR files by only including specific classes and dependencies
in your project and in your JAR file.

Deployment quicksteps
Deployment steps vary according to what you are deploying. In brief, the
following quicksteps describe how to deploy applications, applets, and
JavaBeans. For more information on the Archive Builder, available in
JBuilder SE and Enterprise, see “Deploying with the Archive Builder” on
page 15-17.

D e p l o y i n g J a v a p r o g r a m s 15-11

D e p l o y m e n t q u i c k s t e p s

Applications

1 Add all the resource files and dynamically loaded classes your
application needs to your project using the Add Files/Packages button
on the project pane toolbar.

Optional: Use the Resource Strings wizard, available in JBuilder SE and
Enterprise, to move your strings to a resource bundle. This makes it
easier to localize your application for a different locale.

2 Compile the application.

3 Use JBuilder’s Javadoc wizard, available in JBuilder SE and Enterprise,
to create appropriate documentation or use another means to create
appropriate documentation for your developer customers.

4 Create a JAR file using Sun’s jar tool, JBuilder’s Archive Builder, or the
Native Executable Builder.

5 Copy the JAR file to the target server or installation directories.

6 Create an installation procedure that makes the necessary folders and
subfolders on the end user’s computer and places the files in those
folders. This procedure should also modify the CLASSPATH environment
variable as needed in the end user’s environment to specify the correct
CLASSPATH for finding the Java classes.

Note If you’re creating a Native Executable or Executable JAR archive type
with the Archive Builder or Native Executable Builder, you can
customize the installation procedure by modifying the configuration
file that launches the executable.

Note If users need to have certain Java classes or archives already installed
on their machine, you may need to provide a convenient means for
them to download those files and add them to their local CLASSPATH.

7 Tell your users how to start your application (for example, by
double-clicking on an icon you’ve provided, or running a shell script
from the terminal window).

See also

• Step 16 of the JBuilder tutorial, “Building a Java text editor” in
Designing Applications with JBuilder

Applets

Because browser JDK support varies, creating and deploying applets
becomes quite complicated. The steps below are intended only as a broad
guideline. To learn about all the applet and browser issues, see “Working
with applets” in the Web Application Developer’s Guide.

15-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y m e n t q u i c k s t e p s

1 Add all the resource files and dynamically loaded classes your applet
needs to your project using the Add Files/Packages button on the
project pane main toolbar.

Optional: Use the Resource Strings wizard, available in JBuilder SE and
Enterprise, to move your strings to a resource bundle. This makes it
easier to localize your applet for a different locale.

2 Compile the applet.

3 Create a JAR or ZIP file using Sun’s jar tool, a ZIP utility, or JBuilder’s
Archive Builder.

4 Add the archive attribute with the name of the JAR file inside the
<applet> tags in the applet HTML file. If you have multiple JAR files, list
them separated by commas: archive="file1.jar, file2.jar, file3.jar".
Some earlier browsers do not support multiple listings and only accept
ZIP files.

5 Check the codebase and code values for accuracy.

The codebase attribute states where classes are located in relation to the
location of the HTML file. If the codebase attribute is set to a value of “ ”,
“.”, or “./”, the classes must be located in the same directory as the
HTML file. If the classes are members of a package, the classes must be
in a subdirectory of the HTML file’s directory that matches the package
structure. When the classes are in the same directory as the HTML file,
the codebase attribute is optional, since this is the default. If the classes
are located in a different directory than the HTML file, the codebase
attribute is required and must specify the class files’ directory relative
to the HTML file’s directory.

The code value must be the fully qualified class name of the applet:
package name + class name.

6 Launch your web browser and open your local HTML file for initial
testing.

7 Copy the archive or the deployment file set to the target server.

8 Check that all case in class, package, archive, and directory names in
the <applet> tag exactly match the names on the server.

9 Clear the classpath to eliminate any libraries and JDKs on your path.
You need to assume your users have none of these on their class paths.

D e p l o y i n g J a v a p r o g r a m s 15-13

D e p l o y m e n t q u i c k s t e p s

10 Test by way of the web server by pointing the browser at the URL that
represents the HTML file on the target server.

Note Make sure you copy the correct HTML file to the target folder and put
the JAR file in the same folder. A JBuilder project might contain more
than one HTML file. If there is more than one HTML file, choose the
HTML file containing the <applet> tag.

Optional: If users need to have certain Java classes or archives already
installed on their machine, you may need to provide a convenient
means for them to download those files and add them to their local
CLASSPATH.

Important JDK 1.0.2-compliant browsers do not support JAR archives. Be sure to
create a ZIP file instead.

See also

• Step 7 of the JBuilder tutorial, “Building an applet” in Introducing
JBuilder

JavaBeans

1 Add all the resource files and dynamically loaded classes your
application needs to your project using the Add Files/Packages button
on the project pane main toolbar.

Optional: Use the Resource Strings wizard, available with JBuilder SE
and Enterprise, to move your strings to a resource bundle. This makes
it easier to localize your bean for a different locale.

2 Compile the bean(s).

3 Use JBuilder’s Javadoc wizard, available in JBuilder SE and Enterprise,
to create appropriate documentation for the beans or use another
means to create appropriate documentation for your developer
customers.

4 Create a JAR file using Sun’s jar tool, a ZIP utility, or JBuilder’s Archive
Builder. You can include the documentation in the archive if this is a
development-time version, or omit it if it is a redeployable version. To
include the documentation in the archive using the Archive Builder,
make sure it is a project node by adding it to your project before you
deploy.

5 Provide the JAR file(s) to your customers.

Note If your bean requires any of the JBuilder libraries, see “Redistribution of
classes supplied with JBuilder” on page 15-15.

15-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y m e n t t i p s

Deployment tips
Basic tips for making the deployment process successful include:

• Keep images in a subdirectory (typically called images) relative to the
classes that use them. Do the same for any other resource files.

• Use only relative paths (for example, images/logo.gif) to refer to image
files and other files used by your application or applet.

• Use packages, no matter how big or small an applet or application is.

Setting up your working environment

The key to combining development and deployment is managing what
files go where. As a rule, it’s a good idea to keep your source code
deliverables in a different hierarchy than your development tools. This
keeps the irreplaceable items out of harm’s way.

You’ll find the deployment process easier if you make your project
working environment reflect the reality of a deployed applet or
application, bringing your development a little closer to instant
deployment. Start your project with a JBuilder wizard, because it puts
everything where it should be. Once you have your project built and
running in this situation, you can create a JAR file using Sun’s jar tool or
JBuilder’s Archive Builder, available in JBuilder SE and Enterprise
editions. After creating the archive, you can test your program at the
command line. Be sure to test your applets with any and all the browsers
you need to use.

Tip If you are creating an applet, you can use a copy of the actual HTML page
that is on your web site in your local project, instead of a simpler test one.
That makes the external testing a little more realistic. When you’re
satisfied you can upload the entire directory to your Web site.

Internet deployment

If you are deploying your program to a remote site by FTP, such as an
Internet service provider, the basic procedure for deployment remains the
same. However, you need to use an FTP utility to transfer the files,
following directions provided by your web site provider.

Important Be sure to transfer archives and class files as binary files. An improper
transfer to the Internet site causes java.lang.ClassFormatError exceptions.

Quite often the directory structure of your site as seen through FTP isn’t
quite the same as the URL with which your users access it. Your provider
can tell you where your web site’s root directory is and how to transfer
files there via FTP. Most shareware and commercial FTP programs let you

D e p l o y i n g J a v a p r o g r a m s 15-15

R e d i s t r i b u t i o n o f c l a s s e s s u p p l i e d w i t h J B u i l d e r

create directories as well as copy files, so all the steps above should apply,
although with a different file transfer mechanism.

For information on deploying web applications, see “Deploying your web
application” in the Web Application Developer’s Guide.

Deploying distributed applications

When deploying distributed applications, JBuilder’s Archive Builder
collects your stubs and skeletons into a JAR file. You must install your
ORB on each machine that runs a client, middle tier, or server CORBA
program. If you are using the VisiBroker ORB, see the deployment topic in
the Borland Enterprise Server documentation or see your application
server documentation.

Redistribution of classes supplied with JBuilder
The JBuilder redistributable JAR files are located in the <jbuilder>/redist/
directory. The redistributable archive files for the JDK are in the
<jbuilder>/<jdk>/lib/ directory.

If you are creating your archive with JBuilder’s Archive Builder, available
in JBuilder SE and Enterprise editions, it detects all the resource files,
classes, and libraries you need. The Archive Builder does not include the
JDK in your archive. It assumes that the JDK classes already exist on the
target computer in the form of an installed JDK, Java runtime
environment, or Java Plug-in, or that you are providing it in your
installation.

Important In the case of Java 1.1.1, however, the Swing/JFC classes are not part of
the core JDK and won’t be detected by the Archive Builder. If you are
writing a program that uses these JDKs, be sure to download and deliver
swingall.jar.

If you deploy an applet, you do not need to deliver the JDK JRE classes,
because they are supplied by the browser at runtime. However, you do
need to make sure the version of the JDK used by the applet and the
version used by the browser match. In an intranet situation, you can use
Sun’s Java Plug-in to provide the current JDK.

For information on browser issues and JDK support, see “Browser issues”
in “Working with applets” in the Web Application Developer’s Guide.

Note Typically, the only thing on the CLASSPATH when running an applet is the
Java classes. If a third-party library is on the CLASSPATH as classes or an
archive, and some of those classes are also deployed in the applet or JAR
file, the CLASSPATH copy would be preferred since the System class loader

15-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A d d i t i o n a l d e p l o y m e n t i n f o r m a t i o n

can load it. Whichever one is listed first satisfies the VM and it is as if the
“second” one is not listed at all.

Please examine the files <jbuilder>/license.txt and <jbuilder>/redist/
deploy.txt for information about what you may or may not redistribute
under the JBuilder product license. <jbuilder> represents the name of the
JBuilder directory.

See also

• Java Runtime Environment - “Notes for Developers” at http://
java.sun.com/j2se/1.4/runtime.html

• “The JAR Trail” in the Java Tutorial at http://java.sun.com/docs/books/
tutorial/jar/

• “JAR Guide” at http://java.sun.com/j2se/1.4/docs/guide/jar/
jarGuide.html

Additional deployment information
You can find additional information at the following URLs:

• Java Runtime Environment - “Notes for Developers” at http://
java.sun.com/j2se/1.4/runtime.html

• “Trail: Writing Applets” in the Java Tutorial, which discusses basic
applet considerations such as security, at http://java.sun.com/docs/
books/tutorial/applet/index.html

• “Trail: Security in Java 2 SDK 1.2” in the Java Tutorial, which Discusses
general security APIs and issues, at http://java.sun.com/docs/books/
tutorial/security1.2/index.html

• “The JAR Trail” in the Java Tutorial at http://java.sun.com/docs/books/
tutorial/jar/

• “Understanding the manifest” at http://java.sun.com/docs/books/
tutorial/jar/basics/manifest.html

• “JAR Guide” at http://java.sun.com/j2se/1.4/docs/guide/jar/
jarGuide.html

• Sun developer training and tutorials at http://developer.java.sun.com/
developer/onlineTraining/index.html

• “Writing advanced applications,” which summarizes problems and
solutions related to having different versions of the Java platform
installed on your system, at http://developer.java.sun.com/developer/
onlineTraining/Programming/JDCBook/version.html

D e p l o y i n g J a v a p r o g r a m s 15-17

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

• “The Extension Mechanism Trail” of the Java Tutorial at http://
java.sun.com/docs/books/tutorial/ext/index.html. Explains the new Java
1.2 extension classes which make custom APIs available to all
applications running on the Java platform. The extension mechanism
enables the runtime environment to find and load extension classes
without the extension classes having to be named on the class path.

Deploying with the Archive Builder
This is a feature of

JBuilder SE and
Enterprise

The Archive Builder speeds up the process of creating your deployment
set. It searches your project for classes and resources and gives you the
opportunity to customize the JAR file contents before it archives the files
into a JAR file with the appropriate manifest file.

The Archive Builder and resources

The Archive Builder automatically recognizes certain file types as
resources as specified on the Resource tab of the Build page in Project
Properties. JBuilder copies resources, such as images, sound, and
properties files, from the source path to the output path when compiling.
The output path, which is set on the Paths page of the Project Properties
dialog box, contains the .class files created by JBuilder when it compiles a
program. See “How JBuilder constructs paths” on page 4-9 for more
information on paths.

Note JBuilder can’t determine which resources are required based on the Java
code. The resources must be in the project.

To see a list of the default settings by file extension, see the Resource tab of
the Build page. You can change JBuilder’s default settings and specify
individual files or file extension types to be copied to the output path
during compile. See “Selective resource copying” on page 6-25.

If you have file types in your project that JBuilder doesn’t recognize, you
can add them as generic resource files, then specify them to be copied to
the output path. For more information, see “Adding unrecognized file
types as generic resource files” on page 6-27.

Selecting an archive type

The first step of the Archive Builder lets you select what type of archive
you want to create: Applet JAR, Applet ZIP, Application, Basic,
Documentation, Executable JAR, and Native Executable, as well as other
types. Depending on your choice here, different defaults are set and
different options are available as you work through the steps of the

15-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

wizard. For more information on other available archive types, choose the
Help button in the wizard.

To begin creating an archive,

1 Build the project (Project|Make Project).

2 Choose Wizards|Archive Builder to open the Archive Builder. The
Archive Builder is also available on the Build page of the object gallery
(File|New|Build).

3 Choose an archive type from the Archive Type drop-down list. For
more information on archive types, choose the Help button in the
wizard.

4 Choose Next to continue to the next step of the wizard.

Specifying the file to be created

The name of this step and the available options change according to the
archive type selected. If the Web Start Application or Web Start Applet
archive type, a feature of JBuilder Enterprise, is selected, the name of the
step is Select Web Application. If the Executable JAR archive type is
selected, the name of the step is Specify The Archive To Be Used.

In this step of the Archive Builder, you set a name for your archive node
and file, select the archive’s compression, and choose how frequently the
archive is built. For documentation and source archives, this is the last
step. If your archive type is Web Start Application or Web Start Applet,
you also need to choose a web application (WebApp) defined in your
project. To access a Web Start archive, the JAR must be in a web

D e p l o y i n g J a v a p r o g r a m s 15-19

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

application directory. If your archive type is Executable JAR, you need to
choose the source archive for the executable that you want to create.

Although this step changes slightly according to the archive type selected,
for most archive types, follow these basic steps:

1 Accept the name of the archive node in the Name field or enter a new
name. The archive node displays in the project pane upon completion
of the wizard, but the archive is not actually created until you make or
rebuild the archive node. You can right-click the node and make or
rebuild it at any time, as well as reset its properties. For more
information on the archive node, see “Understanding archive nodes”
on page 15-31.

2 Enter the fully qualified path and file name for the archive to be
generated by the Archive Builder. You can use the ellipsis (...) button to
browse to a different directory location. For the Executable JAR archive
type, choose an existing source archive for the executable that you want
to create.

Note JAR files are only supported in browsers that support JDK 1.1 or later.
If you are deploying an applet to a JDK 1.0.2 browser, you need to use a
ZIP archive file.

3 Web Start Application or Web Start Applet archive types: choose a web
application (WebApp) defined in your project.

4 Check or uncheck the Compress The Contents Of The Archive option.
Usually, you leave this option off, so the archive is uncompressed and
loading time is faster. If your archive is an applet, this option is selected
by default. Because compression makes archive files smaller, applets
are downloaded over the Internet or intranets faster when they’re
compressed.

5 Check or uncheck the Always Create Archive When Building The
Project option. This option determines how often your archive file is

15-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

created. This option is on by default for all archive types. When on, the
archive file is recreated each time you make or rebuild your project.

6 Click Next to continue to the next step or click Finish if this is the last
step. If this is the last step, generate the archive as described in
“Generating archive files” on page 15-31.

For more information on this step, choose the Help button in the wizard.

Choosing deployment descriptor files

The J2EE Application
Client archive type is a

feature of JBuilder
Enterprise

If the J2EE Application Client archive type is selected, this step of the
Archive Builder is where you choose the standard (application-client.xml)
and any proprietary deployment descriptor files to be included in the
META-INF directory of the archive. The J2EE Application Client must have
an application-client.xml file and may have other server-dependent files.

To specify the deployment descriptor files for a J2EE Application Client
archive,

1 Choose the Create Descriptor(s) button and accept the default
application-client.xml file name or enter another file name to create an
empty deployment descriptor file. You can then edit this file before
building the archive.

2 Choose the Add button to browse to any existing deployment
descriptor file(s) to add to your archive.

3 Click Next to continue to the next step of the wizard.

For more information on this step, choose the Help button in the wizard.

D e p l o y i n g J a v a p r o g r a m s 15-21

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

Specifying the parts of the project to archive

In this step of the Archive Builder, you choose what parts of the project
are included in the archive. You can also choose additional classes or files.

To specify the parts of the project you want to include,

1 Choose one of these options for classes:

• Specified Only
• Specified And Dependent
• All

For complete control over the classes included in the archive, choose
Specified Only. If you choose Specified And Dependent, classes that
you add with the Add Classes button are added to the archive, as well
as any classes on the output path that the added classes depend on.

Important If you choose Specified Only or Specified And Dependent, you must
add the classes or packages with the Add Classes button.

2 Choose one of these options for resources. If you choose Specified Only,
you must add the resources with the Add Files button.

• Specified Only
• All

For example, if you want to include all the project classes and resources
in the archive, you would select All for both classes and resources. If
you don’t want to include any dependencies in your archive and only
specified resources, you would choose Specified Only for both classes
and resources and then add the classes and resources you want with
the Add Classes and Add Files buttons. To add classes and files, classes
must be on the project output path and files must be on the project

15-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

source path. For more information on these options, choose the Help
button in the wizard.

3 Choose the Add Classes button if you selected Specified Only or
Specified And Dependent in the Classes category. Then select the
classes or packages to add to your archive. The classes must be on the
project output path. If you choose Specified And Dependent, the
Archive Builder scans these added class files for additional class
dependencies and includes the dependencies in the archive.

4 Choose the Add Files button if you selected Specified Only in the
Resources category. Then select the files to add to your archive. The
files must be on the project source path. Use this option to add
miscellaneous files to your archive, such as resources (.gif, .jpg, and
audio files), property files, or archived documentation (.html,
readme.txt).

Note The Add Files dialog box can’t look inside archive files. If a file or
package you need is inside an archive file, extract it first to your source
folder, then add it using the Add Files button.

5 Click Next to continue to the next step of the wizard.

Specifying archive content for a Resource Adapter archive

The Resource Adapter
(RAR) archive type is a

feature of JBuilder
Enterprise

If the Resource Adapter (RAR) archive type is selected, this step of the
Archive Builder is where you choose JAR archive nodes from the project
and any external files to add to your archive. External files can include
other archives, libraries, documentation, and the required ra.xml
deployment descriptor. The ra.xml file must already exist.

D e p l o y i n g J a v a p r o g r a m s 15-23

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

To specify the archive content for a Resource Adapter archive,

1 Check any JAR archive nodes on the Archive Nodes page that you
want to include in the archive.

2 Choose any files to add to the archive, such as other archives, libraries,
documentation, and the required ra.xml deployment descriptor. Choose
the Add button to browse to a file.

3 Click Finish to close the wizard.

4 Generate the archive as described in “Generating archive files” on
page 15-31.

Determining library dependencies

In this step of the Archive Builder, you determine what to do with library
dependencies. The libraries used in your project are listed, and you can
choose an individual deployment strategy for each one.

Note The Archive Builder never includes the JDK in your archive. It assumes
that the JDK classes already exist on the target computer in the form of an
installed JDK, Java runtime environment, or Java Plug-in, or that you are
providing it in your installation.

Important In JDK 1.1.x, the Swing/JFC classes were not delivered as part of the JDK.
If you are writing programs that use any of these JDKs, you must
download and deliver swingall.jar which contains those files.

Note If you deploy any classes from the DataStore package
(com.borland.datastore) or the VisiBroker package, you’ll see a warning
reminding you that deploying these packages requires a separate
deployment license. If you already have the appropriate license and don’t

15-24 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

want to see this warning again in this project, check “Don’t warn me about
this project again.”

To specify library dependencies,

1 Select a library in the list.

2 Choose one of these options:

• Never Include Any Classes Or Resources

• Include Required Classes And Known Resources

• Include Required Classes And All Resources

• Always Include All Classes And Resources

Typically, Include Required Classes And All Resources is a good choice
for library deployment. For more information on these options, choose
the Help button in the wizard.

3 Select another library in the list and choose a library option.

4 Click Next to continue to the next step of the wizard.

Setting archive manifest options

In this step of the Archive Builder, you choose how the manifest file is
created. For most users, the default option, Create A Manifest, is
sufficient. For more information on the manifest, see the topic called
“Understanding the manifest file” on page 15-3.

To set options for the archive manifest,

1 Accept the default, Include A Manifest In The Archive, if you want a
manifest included.

D e p l o y i n g J a v a p r o g r a m s 15-25

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

2 Choose one of these options if you want a manifest included:

• Create A Manifest

• Create A Manifest And Save A Copy In The Specified File

• Override The Manifest With The Specified File

For more information on these options, choose the Help button in the
wizard.

3 Click Next to continue or click Finish if this is the last step of the
wizard. If this is the last step, generate the archive as described in
“Generating archive files” on page 15-31.

Selecting a method for determining the application’s main
class

This step allows you to set the application’s main class. The main class
runs the application. It contains the public static void main(String[] args)
method.

To set the main class for the archive,

1 Choose one of these options:

• Determine Main Class From Runtime Configurations

This option determines the main class from the selection in the
Configuration drop-down list. The drop-down list includes all
runtime configurations of type Application in the project. Choose a
project runtime configuration or <Auto Select>. <Auto Select> uses
the project runtime configuration marked as default. If there isn’t a
default or the default isn’t an Application runtime configuration, the
first Application runtime configuration in the project runtime

15-26 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

configuration list is used. For more about runtime configurations,
see “Setting runtime configurations” on page 7-6.

Note If you’re creating a native executable or an executable JAR archive
type and you specify a runtime configuration on this step of the
wizard, the main class, application parameters, and VM parameters
of this runtime configuration are included in the configuration file
used to launch the executable. You can customize the configuration
file on the last step of the wizard.

• Use The Class Specified Below

This option determines the main class from the specified class. Click
the ellipsis (...) button and browse to and select a class.

2 Click Next to continue or click Finish if this is the last step of the
wizard. If this is the last step, generate the archive as described in
“Generating archive files” on page 15-31.

For more information on this step, choose the Help button in the wizard.

Caution If a main class isn’t specified, the following won’t execute:

• Launching native executables

• Using java -jar <jarname> from the command-line

• Double-clicking a JAR

Determining which executable files to build

The Archive Builder can automatically bundle an application’s JAR file
with native executable wrappers for easy deployment to various
platforms.

This step is available when you select Native Executable or Executable
JAR as the archive type in the Archive Builder and when you use the
Native Executable Builder (Wizards|Native Executable Builder).

The executable file contains the executable launcher, the configuration file
for the launcher, and the JAR file containing Java classes and resources in
a single file. The Archive Builder sets the JAR comment to the
configuration file and also adds the launcher executable to the beginning
of the file. The Archive Builder allows you to customize the configuration
file for the launcher on the last step of the wizard. Note that because the
JDK is not bundled with the JAR file, it must be installed on the user’s
computer to run the executable.

D e p l o y i n g J a v a p r o g r a m s 15-27

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

Important You must specify a main class on the previous step or the executable
won’t run.

To create an executable file,

1 Choose the executables you want to create. Click the ellipsis (...) button
to rename and/or save the file to a different location.

2 Choose Next to set runtime configuration options for the executable.

For more information on this step, choose the Help button in the wizard.

Running executables
Note that the JDK is not bundled with the JAR file, so the JDK must be
installed on the user’s computer for the executable to run. The
platform-specific executable file looks for the installed JDK in the
following location:

• Windows: Registry.

• Linux/Solaris: JAVA_HOME environment variable and the user’s
path.

• Mac OS X: pre-defined location for the JDK.

Note You can override this default behavior by specifying the location of the
JDK in a custom configuration file. Then the executable file will look in
the specified location. For more information on configuration files, see
the next step.

If you create the executable on the Windows platform and move it to other
platforms, you may need to change the permissions to make it executable.

Choosing the Mac OS X option creates an application that is launchable
only from a command line. To create an application that is launchable
from the Finder, Mac users need to create an Application bundle. Please

15-28 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D e p l o y i n g w i t h t h e A r c h i v e B u i l d e r

refer to Apple’s Mac OS X Developer documentation with regards to
bundles and application packaging.

Setting runtime configuration options

JBuilder automatically creates an executable configuration for launching
the executable archive based on the runtime configuration specified on the
step, Selecting A Method For Determining The Application’s Main Class.
If you choose a runtime configuration on that step of the wizard, the
Archive Builder includes the main class, application parameters, and VM
parameters in the configuration file that launches the executable. For more
information on runtime configurations, see “Setting runtime
configurations” on page 7-6.

If you want to customize the executable configuration, you can modify the
configuration that JBuilder creates or create your own configuration. For
more information on creating configuration files, see Appendix A,
“Creating configuration files for native executables.”

To create an executable configuration for the archive,

1 Choose one of these options:

• Create executable configuration

• Create executable configuration and save a copy in the specified file

• Override the executable configuration with the specified file

Note If you choose to save a copy or override the configuration, the
configuration file is added to the project.

D e p l o y i n g J a v a p r o g r a m s 15-29

C r e a t i n g e x e c u t a b l e s w i t h t h e N a t i v e E x e c u t a b l e B u i l d e r

2 Click Finish to close the wizard.

3 Generate the archive as described in “Generating archive files” on
page 15-31.

For more information on this step, choose the Help button in the wizard.

Creating executables with the Native Executable Builder
This is a feature of

JBuilder SE and
Enterprise

The Native Executable Builder automatically bundles an application JAR
file with native executable wrappers for Windows, Linux, Solaris, and
Mac OS X. Note that the JDK is not bundled with the JAR file, so the JDK
must be installed on the user’s computer to run the executable. The Native
Executable Builder, available on the Wizards menu and the Build page of
the object gallery, is a shortcut to the Native Executable archive type of the
Archive Builder. See “Deploying with the Archive Builder” on page 15-17
for details about the Archive Builder.

JBuilder generates the selected executables and saves them with the
project name and the appropriate file extension at the root of the current
project directory. Choose the ellipsis (...) button next to the selection to
change the default executable name and/or save it to a different location.
Uncheck any executable you don’t want JBuilder to generate.

15-30 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g e x e c u t a b l e s w i t h t h e N a t i v e E x e c u t a b l e B u i l d e r

The Native Executable Builder also provides options for determining the
main class from runtime configurations and creating custom
configuration files to launch the executable.

The Native Executable Builder includes these steps, which are the same
steps as the Executable JAR and Native Executable archive types of the
Archive Builder:

• Specifying the file to be created

• Specifying the parts of the project to archive

• Determining library dependencies

• Setting archive manifest options

• Selecting a method for determining the application’s main class

• Determining which executable files to build

• Setting runtime configuration options

Important Native executables must have a main class specified to execute.

Once you’ve completed the wizard, right-click the native executable node
in the project pane and choose Make to create the executables and the JAR
file. Expand the node to see the generated JAR file and executables. To
modify the properties for this node, right-click and choose Properties.

See also

• Appendix A, “Creating configuration files for native executables”

• “Understanding archive nodes” on page 15-31

D e p l o y i n g J a v a p r o g r a m s 15-31

G e n e r a t i n g a r c h i v e f i l e s

Generating archive files
When you exit the Archive Builder and the Native Executable Builder, an
archive node is automatically displayed in the project pane. However, the
archive file is not generated until you build the archive node.

When the archive node gets built is determined by an option set on the
Specify The File To Be Created step of the Archive Builder and the Native
Executable Builder: the Always Create Archive When Building Project
option.

• If this option is on, the archive file is built each time you choose
Project|Make Project or Project|Rebuild Project.

• If this option is off, you can create the archive file by right-clicking the
archive node in the project pane and choosing Make or Rebuild.

Understanding archive nodes
Using the Archive Builder or Native Executable Builder, you can create
several archive files with different settings to test various deployment
scenarios. First, use the Archive Builder to include different classes,
dependencies, and resources in various combinations. Then, by
comparing the contents of each archive file, you’ll discover the strategy
that best meets your size, download time, and installation requirements.

At any time during development, you can make the archive file, rebuild it,
or reset its properties. You can also view the contents of the archive, as
well as the contents of the manifest file.

Viewing the archive and manifest

To view the archive file and the manifest file, expand the archive node in
the project pane. Double-click the archive file in the project pane to
display its contents in the structure pane and the manifest file in the

15-32 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U n d e r s t a n d i n g a r c h i v e n o d e s

content pane. Double-click other files in the structure pane to open them
as read-only files in the editor.

Modifying archive node properties

At any time during development, you can reset the archive node’s
properties to change the contents of the resulting archive file. To change
properties, right-click the archive node and choose Properties. The
Properties dialog box displays pages that correspond to the steps of the
Archive Builder and the Native Executable Builder.

D e p l o y i n g J a v a p r o g r a m s 15-33

U n d e r s t a n d i n g a r c h i v e n o d e s

Removing, deleting, and renaming archives

After creating several archive versions for your project, you may want to
remove, delete, or rename an archive that you no longer want. There are
several ways to do this, depending on what you want to do.

Removing the archive node does not actually delete the JAR file, but it
does remove the JAR file and the archive node from the project. You can
always add the removed archive to your project again later if you want to.

To remove the archive node and its contents from your project, do one of
the following:

• Right-click the archive node in the project pane and select Remove
From Project.

• Select the archive node in the project pane and click the Remove From
Project button on the project pane toolbar.

• Select the archive node in the project pane and choose Project|Remove
From Project.

You can also delete the archive file from your project. This is useful if you
want to reset the archive node properties and create a new archive file for
the project. But keep in mind that if the Always Create Archive When
Building The Project option is selected, the archive file is created again
during the next project build. To see if this option is set, right-click the
archive node and select Properties. This option, located on the Archive
page, is on by default. After deleting the archive file, reset the archive
properties, right-click the archive node, and select Make to recreate the
archive with the new settings.

To delete the archive file, do one of the following:

• Right-click the archive node in the project pane and select Clean.

• Expand the archive node, right-click the JAR file, and select Delete
<filename.jar>.

Lastly, you can rename archive nodes and files.

To rename archive nodes and files,

• Right-click the archive node or archive file in the project pane and
choose Rename.

• Select the archive node or archive file in the project pane and choose
Project|Rename.

15-34 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

I n t e r n a t i o n a l i z i n g p r o g r a m s w i t h J B u i l d e r 16-1

C h a p t e r

16
Chapter16Internationalizing programs

with JBuilder
This is a feature of

JBuilder SE and
Enterprise

This section examines issues involved in designing your Java applications
to meet the needs of a worldwide audience. Why limit the use of your
applet or application only to users in a particular country, when with a
little extra effort it could be used by people all around the world? Special
features in JBuilder make it easy to take advantage of Java’s
internationalization capabilities, allowing your applications to be
customized for any number of countries or languages without requiring
cumbersome changes to the code.

Although this chapter is about specific JBuilder features and is not meant
to be an in-depth discussion of Java’s internationalization features, several
links are provided to related Java documentation to help get you started.
Before proceeding to the explanation of “Internationalization features in
JBuilder” on page 16-2, please review the following section on
commonly-used terms that are specific to internationalization.

Internationalization terms and definitions
• Internationalization (i18n)

Internationalization is the process of designing or converting an
existing program so it is capable of being used in more than one locale.
Because internationalization is a long word, it is often abbreviated as
‘i18n’, where 18 represents the number of letters between the ‘i’ and ‘n.’

16-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

I n t e r n a t i o n a l i z a t i o n f e a t u r e s i n J B u i l d e r

• Locale

A locale defines a set of culturally-specific conventions for the display,
format, and collation (sorting) of data. In Java, a locale is specified by a
Locale object, which is simply a container for strings identifying a
particular language and country.

• Resourcing

Resourcing is the part of the internationalization process that involves
isolating the locale-specific resources in the source code into modules
so they can be independently added to or removed from the
application. Examples of locale-specific resources include text
displayed to the user or possibly even business rules or application
logic. Java provides a set of ResourceBundle classes for resourcing strings
and objects in Java programs.

• Localization (l10n)

Localization is the customization of a program’s resources for a
particular locale. Note that whereas internationalization generalizes a
program for any locale, localization specializes it for a single locale.
Because localization is a long word, it is often abbreviated as ‘l10n’,
where 10 represents the number of letters between the ‘l’ and ‘n.’

• Native encoding

A native encoding, also commonly known as a character set or
codepage, defines a mapping of numeric values to symbolic characters
within a particular operating system. Because the native encoding
varies by operating system (and sometimes even within the same
operating system), a file containing characters on one system may
appear to have completely different characters on another system using
a different native encoding.

• Unicode

Unicode is a universal character encoding standard maintained by The
Unicode Consortium that defines a character mapping for nearly all the
written languages of the world. Any Unicode character can be specified
in Java source code by its Unicode escape sequence, \uNNNN, where
NNNN is the hexadecimal value of the character in the Unicode
character set. Characters and strings are always processed as 16-bit
Unicode-encoded values within the Java Virtual Machine.

Internationalization features in JBuilder
JBuilder includes a number of features designed to help you easily
internationalize your Java applets and applications. The following
sections discuss these features:

I n t e r n a t i o n a l i z i n g p r o g r a m s w i t h J B u i l d e r 16-3

A m u l t i l i n g u a l s a m p l e a p p l i c a t i o n

• A multilingual sample application

• The Resource Strings wizard, which is used to eliminate hard-coded
strings

• dbSwing internationalization features

• Locale-sensitive components

• Components that display Unicode characters

• Internationalization features in the UI designer

• Unicode support in the IDE debugger

• Support for all JDK native encodings

A multilingual sample application
JBuilder includes an extensive multilingual sample order entry
application demonstrating many of the important internationalization
concepts in detail. This sample also illustrates many other important
features of JBuilder, such as building applications with JBuilder
components, creating internationalized JavaBeans, and using the
DataExpress architecture.

You can find the IntlDemo.jpx project located under the samples/dbswing/
MultiLingual directory of your JBuilder installation. Please refer to the
IntlDemo.html documentation file and source code in the sample for more
detailed information. The IntlDemo sample supports and includes
translations for 15 different locales.

The Borland Multilingual International Store’s LocaleChooser JavaBean lets
you switch the application’s locale at runtime. Doing so automatically
adapts the UI to the language and conventions for the selected locale.

The ProductFrame lets users see images of Borland Store products and
written descriptions in their own language. Note how the buttons and

16-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

A m u l t i l i n g u a l s a m p l e a p p l i c a t i o n

labels adjust their sizes automatically for the different German and Italian
translations shown here.

The OrderFrame displays the address of the customer and the cost of the
order in the appropriate format for the user’s locale. The OrderFrame is
shown in German here:

I n t e r n a t i o n a l i z i n g p r o g r a m s w i t h J B u i l d e r 16-5

E l i m i n a t i n g h a r d - c o d e d s t r i n g s

Eliminating hard-coded strings
A common design error that prevents your application or applet from
being localized easily is the inclusion of hard-coded strings in your source
code that are displayed in the UI of your application or applet.

While you can resource hard-coded strings in your user interface after
you’ve completed and tested your source code, it’s better to resource
visible strings as part of the UI design process.

Resourcing your UI as you write it provides two major advantages:

• You don’t have to go back and examine all the hard-coded strings in
your source code and check which ones need to be resourced. Not only
is this process very time-consuming, but sometimes it is difficult for
you (or a colleague who is less familiar with your code) to determine
which strings need resourcing.

• Resourcing strings early can help you discover non-internationalized
UI designs earlier in your development process, saving you the effort of
having to rewrite them later.

JBuilder provides two ways to get these benefits with minimal effort: the
Resource Strings wizard and the Localizable Property Setting dialog box.

Using the Resource Strings wizard

The Resource Strings wizard scans your source code and allows you to
quickly and easily move hard-coded strings and single characters such as
mnemonics into Java ResourceBundle classes. This wizard works with any
Java file, not just source code generated by JBuilder.

ResourceBundles are specialized files that contain a collection of translatable
strings. (They may also contain other types of data, though this is less
common.) A unique resource key identifies each translatable string in the
ResourceBundle. The hardcoded string in your application is replaced by a
reference to the ResourceBundle and the resource key. This separation of
application logic and translatable elements is called resourcing. These
separate resource files are then sent to translators.

To move your strings into a ResourceBundle class,

1 In the project pane, double-click the source code file you want scanned
to open it in the editor.

16-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

E l i m i n a t i n g h a r d - c o d e d s t r i n g s

2 Choose Wizards|Resource Strings to display the Resource Strings
wizard:

3 Specify the name of the ResourceBundle you are using. JBuilder
suggests a default name. You can accept it or change it. By default, the
ResourceBundle you create will be a ListResourceBundle. If you want to
create a PropertyResourceBundle instead, click the New button and select
PropertyResourceBundle from the Type drop-down list in the dialog box
that appears and click OK.

PropertyResourceBundles are text files with a .properties extension, and
are placed in the same location as the class files for the source code.
ListResourceBundles are provided as Java source files. Because they are
implemented as Java source code, new and modified
ListResourceBundles need to be recompiled for deployment. With
PropertyResourceBundles, there is no need for recompilation when
translations are modified or added to the application.
ListResourceBundles provide considerably better performance than
PropertyResourceBundles.

4 If you want just the current file in the editor resourced, select the
Current Source File Only. If you want all files in the same package as

I n t e r n a t i o n a l i z i n g p r o g r a m s w i t h J B u i l d e r 16-7

E l i m i n a t i n g h a r d - c o d e d s t r i n g s

the file you have open to be resourced, select the Source Files In
Current Package option, and click Next.

5 Specify how you want the keys generated. Each string is identified by a
key. For example, if the string to be resourced is “Open File” and you
select the Generate Keys From The String Value option, the key
becomes Open_File. The same string might become jbutton1_ToolTipText
if you select the Generate Keys From Component And Property Names.
If you select the Generate Keys Sequentially option, the key might
become String_10, if it’s the tenth string in the file. If you select the third
option, you can also add a Prefix String that becomes the prefix of the
name of the key. The default prefix is String_.

6 Choose Next to display the final page of the Resource Strings wizard:

To sort either the Key or Value column, click the Key or Value column
header. Clicking the column header again displays the column in
reverse order.

16-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

d b S w i n g i n t e r n a t i o n a l i z a t i o n f e a t u r e s

If you click a string displayed in the Resource Strings wizard, the line
where the string appears is highlighted in your source code. You can
use this feature to examine the string’s context in your code.

7 Uncheck any string you don’t want resourced.

8 Click Finish.

Using the Localizable Property Setting dialog box

The Localizable Property Setting dialog box allows you to resource visible
strings as you create or customize components in your UI. In the
Inspector, simply right-click any text property, such as the label of a
ButtonControl, and select the ResourceBundle command to display the
Localizable Property Setting dialog box:

This dialog box displays options similar to those in the Resource Strings
wizard but includes only those options that affect the single (selected)
property. Select the Store Text In ResourceBundle For Localization option
and select how the keys are generated if these options aren’t already set or
if you wish to make changes. Because resourcing from the Inspector is so
quick and convenient, you can easily make it an integral part of
customizing the components in your application.

dbSwing internationalization features
dbSwing is a feature of

JBuilder Enterprise
The dbSwing architecture includes several design decisions that facilitate
internationalization of an application or applet:

• Non-internationalized, deprecated functions used in JDK 1.0 are
avoided within dbSwing.

• All messages in dbSwing are stored in ResourceBundle classes, allowing
applications built with these components to display text in the correct
language for the end user’s locale.

I n t e r n a t i o n a l i z i n g p r o g r a m s w i t h J B u i l d e r 16-9

U s i n g J B u i l d e r ’ s l o c a l e - s e n s i t i v e c o m p o n e n t s

• All dbSwing components handle international issues such as
locale-sensitive data formatting and locale-dependent collation.

Most JBuilder dbSwing components include a textWithMnemonic property.
This property supports a mnemonic character that is specified in the same
string used to display the component’s text. The Swing design (which
many dbSwing components extend) is to store the text and mnemonic
characters into separate properties. This makes localization difficult as
translators often have little context on which to base the translating of
strings. Allowing dbSwing components to store the mnemonic character
embedded in the text itself allows the translator to choose the correct
mnemonic. If this feature is used effectively, it can provide some context
during translation.

JBuilder’s IntlSwingSupport component provides Swing
internationalization support for twelve locales. When IntlSwingSupport is
instantiated, it automatically updates Swing’s internal localizable
resources appropriately for the current locale. IntlSwingSupport need be
instantiated once only in an application, and it should be instantiated on
application startup before any Swing components are displayed.

To initialize IntlSwingSupport for a locale other than the default locale (in a
multilingual application, for example), set the locale property of the
IntlSwingSupport component to the target locale. For example:

new IntlSwingSupport();
int response = JOptionPane.showConfirmDialog(frame, localizedMessageString,
 localizedTitleString, JOptionPane.OK_CANCEL_OPTION);

Note IntlSwingSupport is meant to provide international support for some of the
Swing components, not for dbSwing components. All dbSwing
components are already fully internationalized.

As of JDK 1.2, the only Swing components with visible, translatable text
strings are the JFileChooser, JColorChooser, and JOptionPane. For more
information on locales, see the Sun documentation for the Locale class.

Using JBuilder’s locale-sensitive components
In addition to being fully resourced, many of JBuilder’s components also
provide useful locale-sensitive behavior. For example, string data that is
loaded into a Column of a JdbTable using DataExpress DataSet components is
automatically sorted according to the default collation order for the user’s
runtime locale. Similarly, date, time, and numeric values are automatically
formatted correctly for the user’s locale.

By default, objects inherit the locale of their containers. Therefore the
locale setting on a DataSet is used by default by Columns within the DataSet.
Alternatively, a locale can be specified explicitly for each Column object
within the DataSet. This is useful if, for example, each Column holds data

16-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r c o m p o n e n t s d i s p l a y a n y U n i c o d e c h a r a c t e r

that must be sorted by a different locale. Refer to the JDK’s API
documentation about the Collator class for more information about
locale-sensitive sorting.

For more information about the locale-sensitive formatting of data types
in Java, refer to the DateFormat, NumberFormat, and MessageFormat classes in the
JDK API documentation.

JBuilder components display any Unicode character
Component architectures which rely solely upon native UI peer controls
to display characters can only display the set of characters supported by
the native peer. Because JBuilder components use Java to display
characters rather than native peers, they can display any Unicode
character for which a font has been installed on your system, regardless of
whether that character actually exists in your operating system’s default
character set.

To display Unicode characters for a new font,

1 Install the desired font on your operating system.

2 Modify the JDK font.properties file for your locale, specifying that the
font for that character is now available.

For instructions on how to do this, refer to “Adding Fonts” in the JDK
Internationalization documentation.

Internationalization features in the UI designer
JBuilder’s UI designer is a powerful tool for the creation and verification
of your internationalized UI design. As you add translatable text elements
to your UI, you can instantly put them into resource bundles. The
Inspector automatically reads strings from and writes them back to
resource bundles for you. In addition, after you’ve resourced all the text of
your UI and have received a localized resource bundle from your
translator, you can use the designer to quickly build and verify your
internationalized user interface.

The Inspector displays locale-sensitive short description information
about a JavaBean’s property, as described in the internationalization
section of the JavaBeans specification.

The Inspector allows the use of Unicode character escape sequences to
denote characters that cannot be entered directly via the keyboard under
your operating system locale. When you want to insert a Unicode character
into a string property you’re editing, simply put the hexadecimal value of
the character’s Unicode escape sequence within angle brackets. For

I n t e r n a t i o n a l i z i n g p r o g r a m s w i t h J B u i l d e r 16-11

I n t e r n a t i o n a l i z a t i o n f e a t u r e s i n t h e U I d e s i g n e r

example, to insert the Japanese character for the word “mountain” into the
label of a button, enter “<5C71>”. If your system has Japanese fonts
installed and the proper settings in your JDK font.properties file, the
character will be displayed as the label of the button, and the Unicode
escape “\u5C71” will appear in your source code.

The UI designer provides excellent support for dynamic layout managers,
a crucial requirement for building internationalized UI designs. Building a
single UI capable of supporting multiple languages is a difficult task but
one that is made much easier by the UI designer’s support for Java’s
dynamic AWT layout managers. When designing a UI intended to be
localized for more than one language, an extremely important rule is
always use a dynamic layout manager.

Consider, for example, the following Dialog containing OK, Cancel, and
Help buttons:

This displays as expected for English labels, but when the labels are
translated into German, the label’s text is too long to fit completely within
the fixed button size. This is a very common problem that almost always
occurs when attempting to localize a non-internationalized UI.

The solution is to use one or more dynamic AWT layout managers to
allow the buttons to grow based on their label width. Here are the English
and German internationalized versions of the same Dialog, written using a
panel with a dynamic GridLayout for the buttons and embedded within a
BorderLayout Dialog.

To learn more about creating dynamic layouts using the UI designer, refer
to “Using layout managers” in Designing Applications with JBuilder.

The multilingual international sample application also demonstrates some
advanced techniques for updating the layout of Frames in an application at
runtime.

16-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

U n i c o d e i n t h e I D E d e b u g g e r

Unicode in the IDE debugger
The JBuilder debugger allows you to view and edit Unicode characters,
even if your operating system does not support them. When examining
values in the debugger’s Watch pane, expand the value in the tree you
want to inspect until you can see its primitive Java type. By default, the
debugger tries to display the Unicode character, assuming that your
operating system can display it.

To view the character’s Unicode equivalent, right-click the value and
select the Show Hex Value option to see the character’s Unicode escape
sequence. You can also change the value by selecting Modify Value and
entering another Unicode escape sequence in the Change Data Value
dialog box.

Specifying a native encoding for the compiler
The JBuilder and javac compilers compile source code encoded in native
encodings (also known as local codepages), which is the storage format
used by most text editors, including the JBuilder editor.

The IDE and compiler support all JDK native encodings. All JBuilder
compilers automatically select the appropriate native encoding for your
operating system’s locale. You can also specify any JDK encoding for
compiling source code files which were written in a different native
encoding.

You can specify an encoding name to control how the compiler interprets
characters beyond the English (ASCII) character set. The specification can
be done on a project-wide basis or with the encoding compiler switch
from the command line. If no setting is specified for this option, the
default native encoding converter for the platform is used.

Setting the encoding option

To set the encoding option from within the IDE,

1 Choose Project|Project Properties to display the Project Properties
dialog box.

2 Click the General tab.

3 Select an encoding name from the Encoding drop-down list.

4 Choose OK.

I n t e r n a t i o n a l i z i n g p r o g r a m s w i t h J B u i l d e r 16-13

S p e c i f y i n g a n a t i v e e n c o d i n g f o r t h e c o m p i l e r

To set the encoding option at the command line,

1 Use bcj’s -encoding option followed by the encoding name.
2 Use bmj’s -encoding option followed by the encoding name.

Native encodings supported

Two encoding names have special meaning:

• null

Specifies that no native-encoding conversion should be done. Each byte
in the file is converted to Unicode by setting it to the lower byte of the
Unicode character. The upper byte of the Unicode character is set to
zero.

• default

Equivalent to not specifying an encoding option. This uses the default
encoding of the user’s environment.

For a description of each encoding, see the JDK Internationalization
Specification: Character Set Conversion: Supported Encodings at http://
java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html. The
following descriptions supplement that section:

• Unicode

Unicode, with BigEndian or LittleEndian indicated by
Byte-Order-Mark.

• UnicodeBig

Big-Endian Unicode.

• UnicodeLittle

Little-Endian Unicode.

Adding and overriding encodings

To add encodings to the Encoding drop-down list on the Build page of the
Project Properties dialog box (Project|Project Properties),

1 Open the user.properties file in the <.jbuilder> folder.

2 Add encodings as in the following example:

compiler.java;encodings.add.1=ISO8859_2
compiler.java;encodings.add.2=ISO8859_3

3 Save and close the file.

4 Restart JBuilder.

16-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T h e 1 6 - b i t U n i c o d e f o r m a t

To replace encodings in the Encodings drop-down list,

1 Open the user.properties file in the <.jbuilder> folder.

2 Override the encodings as in the following example:

compiler.java;encodings.override.1=ISO8859_2
compiler.java;encodings.override.2=ISO8859_3

3 Save and close the file.

4 Restart JBuilder.

More about native encodings

Non-Unicode environments represent characters using different encoding
systems. In the PC world, these are known as codepages; Java refers to them
as native encodings. When moving data from one encoding system to
another, conversion needs to be done. Because each system can have a
different set of extended characters, conversion is required to prevent loss
of data.

You can also use the Java utility, native2ascii, to convert native-encoded
characters to Unicode escape sequences (for example, \uNNNN). The
converted file(s) can then be readily compiled on any system without the
need for more conversion or the specifying of a particular encoding.

Most text editors, including JBuilder’s editor, write text in the native
encoding. For example, Japanese Windows uses the Shift-JIS format, and
US Windows uses Windows Codepage 1252. Starting with JDK 1.1, javac
is also able to compile “native-encoded” source code. The encoding can be
specified by using the “encoding” switch. When the encoding is not
specified, the compiler uses the encoding based on the user’s
environment.

Unlike Unicode, source code written with native encoding is not directly
portable to systems using other encodings. For example, if source code has
been encoded in Shift-JIS (a Japanese encoding), and you are running the
compiler in a US Windows environment, you must specify the Shift-JIS
encoding for the compiler to read the source correctly.

The 16-bit Unicode format
Unicode is a universal system of representing characters using 16-bit
numbers. The 16-bit Unicode character set can be supported directly, or
can be represented indirectly within the 7-bit ASCII character set, using
the \u escape character followed by four hexadecimal digits.

When all major operating environments directly support Unicode, this
will replace the established approach, which requires conversion between

I n t e r n a t i o n a l i z i n g p r o g r a m s w i t h J B u i l d e r 16-15

J B u i l d e r a r o u n d t h e w o r l d

different native encodings with conflicting character values. Java is one of
the first environments to standardize on Unicode; Unicode is the internal
character set of the Java environment.

Unicode support using ASCII and ‘\u’

Currently, most Windows text editors, including JBuilder’s editor, store
and process text as 7- or 8-bit characters, rather than 16-bit Unicode
characters. The ASCII character set uses a 7-bit encoding that contains the
26 letters of the English alphabet and some symbols. Almost all native
encodings have ASCII as a subset, and represent it in the same way: the
first 127 characters of an encoding are the ASCII character set. The ASCII
character set can be considered a subset of Unicode.

To enable users to specify Unicode characters in their source code without
a Unicode-enabled editor, the Java specification allows the use of the \u
“Unicode escape” in an ASCII file. This usage enables extended characters
to be represented by a combination of ASCII characters. This way of
representing Unicode uses 6 characters to represent each non-ASCII
character. To enter an ordinary ASCII character, you press the character’s
key on the keyboard, and to enter a non-ASCII character, you type in the
Unicode escape sequence representing the character.

In this 7-bit representation of Unicode, each character beyond the ASCII
character set is represented in the form \uNNNN, where NNNN are the 4
hex digits of the Unicode character. For example, the Unicode character
“Latin Small Letter F with Hook”, a cursive ‘f’ which is represented in
Unicode with the hexadecimal number 0192, can be entered by typing
“\u0192”.

Unicode, in both the 16-bit and 7-bit forms, is in a universal format; source
code in Unicode is directly portable to all platforms, in all languages.

JBuilder around the world
JBuilder is available in several languages including English, German,
French, Spanish, and Japanese. Localized versions usually include
translated documentation, UI, and components. Localized versions of
JBuilder are available for purchase from the Borland sales office in those
countries. To find links to JBuilder international sites, see Borland
Worldwide at http://www.borland.com/bww/.

16-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

O n l i n e i n t e r n a t i o n a l i z a t i o n s u p p o r t

Online internationalization support
Visit the multi-lingual-apps newsgroup on the Borland web page at
news://forums.borland.com/borland.public.jbuilder.multi-lingual-apps.
This newsgroup is dedicated to JBuilder internationalization and
multilingual issues and is actively monitored by our support engineers as
well as R&D and QA engineers in the JBuilder internationalization group.

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-1

C h a p t e r

17
Chapter17Tutorial: Compiling, running,

and debugging
This tutorial is a feature of

JBuilder SE and
Enterprise

This step-by-step tutorial shows you how to find and fix syntax errors,
compiler errors, and runtime errors in a sample provided with JBuilder.

• Syntax errors are identified before you compile. Syntax errors occur in
code that does not meet the syntactical requirements of the Java
language.

• Compiler errors are errors generated by the compiler: the syntax may
be correct, but the compiler cannot compile the code due to missing
variables, missing classes, or incomplete statements. Note that the true
cause of an error might occur one or more lines before or after the line
number specified in the error message.

• Runtime errors occur when your program successfully compiles but
gives runtime exceptions or hangs when you run it. Your program
contains valid statements, but the statements cause errors when they’re
executed.

The tutorial uses the sample project that is provided in the <jbuilder>/
samples/Tutorials/DebugTutorial folder. The sample is a simple
mathematical calculator. The program contains introduced errors and will
not compile and run as provided. You must work through this tutorial,
finding and fixing the errors, in order for the program to run.

Important The line numbers in this tutorial may not match the line numbers
displayed in JBuilder.

17-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 1 : O p e n i n g t h e s a m p l e p r o j e c t

For more information on compiling, running, and debugging, read the
following chapters:

• Chapter 6, “Building Java programs”

• Chapter 5, “Compiling Java programs”

• Chapter 7, “Running Java programs”

• Chapter 8, “Debugging Java programs”

The Accessibility options section in the JBuilder Quick Tips contains tips
on using JBuilder features to improve JBuilder’s ease of use for people
with disabilities.

For information on documentation conventions used in this tutorial and
other JBuilder documentation, see “Documentation conventions” on
page 1-4.

Step 1: Opening the sample project
In this step, you will open the project file and open one of the files in the
project. You’ll see that syntax errors exist in one of the files.

To open the sample project,

1 Choose File|Open Project. The Open Project dialog box is displayed.

2 Navigate to the samples/Tutorials/DebugTutorial folder of your JBuilder
installation.

3 Double-click DebugTutorial.jpx. The project is opened in the project
pane. The files in the project are listed in the project pane. This project
consists of three files:

• Application1.java - The runnable file, containing the main() method.

• DebugTutorial.html - The HTML file that provides a descriptive
overview of the project.

• Frame1.java - The file that contains the frame, the components, and
the methods for the program.

4 Double-click Frame1.java. This opens the file in the editor and displays
its structure in the structure pane.

Notice the Errors folder in the structure pane. You will be finding and
fixing these errors in Step 2 of the tutorial.

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-3

S t e p 2 : F i x i n g s y n t a x e r r o r s

Step 2: Fixing syntax errors
Syntax errors do not meet the syntactical requirements of the Java
language. JBuilder identifies these errors before you compile. They are
listed in the Errors folder of the structure pane. If you try to compile the
program without fixing these syntax errors, JBuilder will display the
errors in the message pane. The program cannot be compiled until these
errors are fixed.

In this step, you will find the syntax errors in the sample program and fix
them. For more information on JBuilder’s error messages, see the online
topic called “Compiler error messages.”

To find and fix syntax errors,

1 Expand the Errors folder in the structure pane.

Three errors are listed. The first error indicates that a semi-colon is
missing from the end of the line of code.

2 Click the first error in the structure pane. JBuilder moves the cursor to
the matching line of code in the editor. If you single-click the error,
JBuilder highlights the matching line of the code. A double-click places
the cursor in the column where the error occurred.

Tip The content pane’s status bar displays the line and column number, as
well as the insert mode.

3 Add a semi-colon to the end of the line. You’ve fixed the error, and it is
removed from the structure pane.

4 Click the next error in the structure pane. JBuilder moves the cursor to
the matching line of code in the editor. This error is a little trickier to
decipher. The message means that a type identifier was expected at this
point in the program, but was not found.

Notice that the line of code starts with the keyword else, and that the
next line consists of a single closing brace. If you read the previous lines
of code, you’ll notice the beginning of an if statement. In Java, an if
statement must include an opening and closing brace. However, if you
look on the line with the if statement, you’ll see that the opening brace
is missing.

17-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 3 : F i x i n g c o m p i l e r e r r o r s

5 Add an opening brace to the end of that line. The completed line of
code will look like this:

if (valueOneOddEven) {

Notice how the editor’s brace matching feature shows you the
matching closing brace.

The remaining two syntax errors are removed from the structure pane.
Different errors are now displayed in the Errors folder. You will fix
these errors in the next step.

6 Click the Save All button on the main toolbar.

Sometimes it takes a bit of detective work to correct syntax errors. Often,
fixing one syntax error will fix several errors listed in the structure pane.
In this case, for example, the third syntax error was: 'class' or 'interface'
expected at line 227. Because the closing brace did not have a
corresponding opening brace, JBuilder expected to find a class declaration
after the close of the current method. However, when the opening brace
was added, JBuilder could determine that the brace now had a match and
that the next line of code was not in error.

Tip You can find matching braces by moving your cursor to the brace. The
matching brace is highlighted.

In the next step, you’ll find and fix errors that would prevent this program
from compiling.

Step 3: Fixing compiler errors
In this step of the tutorial, you will find and fix errors that would prevent
your program from compiling. These errors are displayed in the Errors
folder of the structure pane.

To find and fix compiler errors,

1 Click the first error in the Errors folder:

Constructor Double() not found in class java.lang.Double at line 38

JBuilder positions the cursor on the matching line of code:

Double valueOneDouble = new Double();

The error message indicates that the Java class java.lang.Double does not
contain a parameterless constructor. The highlighted statement is
attempting to create a new Double object that does not have a parameter.
If you look at the constructors in the java.lang.Double class, you’ll see
that all constructors require a parameter. Additionally, if you look a

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-5

S t e p 3 : F i x i n g c o m p i l e r e r r o r s

few lines further on in the program, you’ll see that the Double object,
valueTwoDouble, is constructed with an initial value of 0.0.

Tip Position the cursor between the parenthesis and press Ctrl+Shift+Space to
display ParameterInsight, JBuilder’s pop-up window that displays the
required parameter type. You can also right-click the Double() method
and choose Find Definition to open the source in the editor.

2 Insert 0.0 between the parenthesis. The statement will now read:

Double valueOneDouble = new Double(0.0);

Tip The content pane status bar now displays the word Modified, indicating
that you’ve made changes to the file.

3 Click the Save All button on the toolbar.

4 Click the next error in the Errors folder:

Variable subtractresultDisplay not found in class DebugTutorial.Frame1 at
line 243

This error indicates that the variable subtractresultDisplay has not been
defined.

5 Choose Search|Find to display the Find/Replace Text dialog box.

Tip If the Find command is dimmed, click in the editor and choose Search|
Find again.

6 Enter subtractresultDisplay in the Text To Find field. Make sure the
Match Case option is turned off. Click the Search From Start Of File
option to start the search from the beginning of the file.

17-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 3 : F i x i n g c o m p i l e r e r r o r s

7 Click Find All. The results of the search are displayed on the Search tab
of the message pane.

Notice that two of the three references to this label are
subtractResultDisplay; there is an uppercase R in Result. Casing is critical
in Java: subtractresultDisplay is not the same as subtractResultDisplay.

8 Double-click the incorrect reference in the Search tab to move the
cursor to the reference in the editor.

9 Change subtractresultDisplay to subtractResultDisplay.

10 Click the X on the Search tab to close it. (You can also right-click the tab
and choose Remove “Search” Tab.)

Use CodeInsight to fix the remaining error:

1 Click the remaining error in Errors folder. This error indicates that
there is no setTest() method in javax.swing.JLabel.

Method setTest(java.lang.String) not found in class javax.swing.JLabel at
line 254

JBuilder positions the cursor on the matching line of code.

2 Position the cursor after the dot (.) and press Ctrl+Space. This displays
the CodeInsight pop-up window that lists available member functions.

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-7

S t e p 4 : R u n n i n g t h e p r o g r a m

Note If the pop-up window is not displayed, see “Keymaps for editor
emulations” (Help|Keyboard Mappings) for a list of CodeInsight
keystrokes.

• Scroll through the window using the arrow keys. Those items that
are in bold-faced type are in this class. The items with lines through
them have been deprecated. The grayed-out items are inherited, but
are available for use.

• Search for setText by typing setText or scrolling. Once selected,
double-click it or press Enter. The setText() method is inserted in the
editor after the dot, replacing the incorrect setTest method name. A
tool tip displays the expected method parameter type.

3 Click the Save All button on the toolbar.

In the next step, you’ll examine the runtime configuration and run the
program.

Step 4: Running the program
In this step of the tutorial, you will examine the program’s runtime
configuration and run the program.

Runtime configurations are preset runtime parameters. Using preset
parameters saves you time when running and debugging, because you
only have to set the parameters once. With preset configurations, each
time you run or debug you simply select the desired configuration.

For more information on runtime configurations, see “Setting runtime
configurations” on page 7-6.

17-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 4 : R u n n i n g t h e p r o g r a m

To examine the runtime configuration for this application,

1 Choose Run|Configurations. The Run page of the Project Properties
dialog box is displayed.

There is one preset configuration - DebugTutorial. It is an Application
configuration, meaning that an application runner is used for running.
It is the default configuration, and will also be displayed on the context
menu when you right-click Application1.java, the runnable file.

2 Click the Edit button. The Runtime Configuration Properties dialog box
is displayed.

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-9

S t e p 4 : R u n n i n g t h e p r o g r a m

Notice that the Type is set to application; the application runner is used.
The Main Class is set to DebugTutorial.Application1.

3 Click the Debug tab to view debug properties for the runtime
configuration. The Debug page is displayed.

Notice that Smart Step is enabled.

4 Click OK two times to close the Runtime Configuration Properties
dialog box and the Project Properties dialog box.

Saving files and running the program

Save your changes and run the program:

1 Click the Save All button on the toolbar.

2 Click the Run Project button on the toolbar. The program runs using the
DebugTutorial configuration, the default configuration. Compiler

17-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 5 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

output is displayed on the Application1 tab in the message pane. The
program UI is displayed.

3 Enter whole numbers into the program’s Value 1 and Value 2 input
fields. Press the Compute Values button. The values are computed and
displayed. However, if you look carefully at computed results, you’ll
see that there are some runtime errors; the program compiles and runs
but gives incorrect results. You will find and fix these errors in the next
steps.

4 Choose File|Exit to exit the application.

5 Click the X on the Application1 tab in the message pane to close it.

In the next step, you’ll find and fix a runtime error.

Step 5: Fixing the subtractValues() method
In this step of the tutorial, you will find and fix one of three runtime
errors. To find this error, you’ll use debugger features. You’ll learn how
to:

• Start and stop the debugger.

• Create a floating window for one of the debugger views.

• Set a breakpoint.

• Step into and step over a method.

• Trace into a thread.

• Set a this watch, an object watch, and a local variable watch.

• Use the Evaluate/Modify dialog box.

In the previous step, you ran the program. When you entered values into
the Value 1 and Value 2 input fields, and pressed Compute Values to

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-11

S t e p 5 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

compute the added, subtracted, multiplied, and divided values, you may
have noticed that the subtracted value was not correct. For example, if you
enter 4 in the Value 1 field and 3 in the Value 2 field, the subtracted result
is 0.0 instead of 1.0.

To find this error, we’ll use the debugger. First, we’ll set a breakpoint and
start the debugger.

1 Use the Find/Replace Text dialog box (Search|Find) to find the line of
code that calls the addValues() method. This is the first method called
when the Compute Values button is pressed. Enter addValues in the Text
To Find field of the dialog box to locate the call to the method. Press the
Find button.

2 Click the gray gutter in the editor to the left of the line of code. A
breakpoint is set on this line. The red circle icon indicates that the
breakpoint has not been verified.

3 Click the Debug Program button on the toolbar. JBuilder starts the
debugger VM, using the DebugTutorial runtime configuration.

The program is now running and waiting for user input (this may take
a few moments).

4 Enter 4 in the Value 1 field and 3 in the Value 2 field. Press Compute
Values. Before you can examine the results, the debugger takes control.
The program is minimized and the debugger is displayed in the
message pane. Blue icons are now displayed in the editor next to
executable lines of code, showing where valid breakpoints can be set.
The icon for the breakpoint you just set has changed to a red dot with a
green checkmark to show that the breakpoint is valid. The arrow
indicates the execution point (in this case, the breakpointed line is also
the execution point).

17-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 5 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

For information on the debugger UI, see “The debugger user interface”
on page 8-8.

5 Click the Breakpoints tab on the left side of the debugger to go to the
Data and code breakpoints view. The default breakpoint and the
breakpoint you just set are displayed. The debugger status bar displays
a message indicating that the program has stopped on the breakpoint
you set in the editor.

The next step is to trace into the stepping thread. This allows you to see
where methods are called and set watches on those methods.

1 Go to the Threads, call stacks, and data view. Notice how the view is
split, allowing you to see the contents of the item selected on the left
pane on the right pane.

2 Right-click an empty area of the left pane of the view and choose
Floating Window. The view now turns into a floating window and is
initially displayed at the top left of the screen. You can resize the
window or move it. Changing a view to a window allows you to look at
more than one debugger view at a time. (Note that all views, except the
Console, output, input and errors view, can be turned into floating
windows.)

3 Scroll in the editor so that you can see the breakpoint and the floating
window at the same time.

4 You can also set the breakpoint on the call to the subtractValues()
method instead of the addValues() method, allowing you to get closer to

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-13

S t e p 5 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

the actual area of the program you want to examine more closely. To do
this, click the Step Over button on the debugger toolbar. This steps over
the call to the addValues() method, positioning the execution point on
the call to the subtractValues() method.

5 Click the Step Into button to step into the subtractValues() method. The
subtractValues() method is now highlighted in the left pane of the
floating Threads, call stacks and data view.

6 Right-click an empty area on the left pane of the floating Threads, call
stacks and data view and uncheck Floating Window to close it. The
floating window is displayed again as a debugger view.

Tip If you want to reset the debugger tabs to their default order, right-click
an empty area of the view and choose Restore Default View Order.

7 Go to the Threads, call stacks, and data view. Notice that the
subtractValues() method is expanded on the right pane of the view.

Tip You can use the Show Current Frame button to display the thread
being stepped into.

The next step is to set watches on objects and variables. This allows you to
examine data values.

1 Create a this object watch by right-clicking the this object in the
expanded list:

this = {DebuggerTutorial.Frame1@3c6}

Choose the Create ‘this’ Watch command. A watch on the this object
allows you to trace through the current instantiation of the class.

17-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 5 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

2 The Add Watch dialog box is displayed, with the Enter A Watch
Description field available. Click OK.

You do not need to enter a description for the watch. If you do enter a
description, it is displayed on the same line as the watched expression
in the Data watches view. A description may make individual watches
easier to locate in the view.

3 Right-click the this object again:

this = {DebuggerTutorial.Frame1@3c6}

This time, choose the Create Object Watch command to create an object
watch. The Add Watch dialog box is displayed. Click OK.

4 Right-click the valueOneDouble object in the expanded list (on the right
pane) to create a watch on the first value being passed to the
subtractValues()method:

valueOneDouble: java.lang.Double. = {java.lang.Double@3c7}

Choose the Create Local Variable Watch command. The Add Watch
dialog box is displayed. Click OK.

5 Right-click the valueTwoDouble object in the expanded list to create a
watch on the second value being passed to the method:

valueTwoDouble: java.lang.Double. = {java.lang.Double@3c7}

Choose the Create Local Variable Watch command. The Add Watch
dialog box is displayed. Click OK.

6 Go to the Data watches view.

7 Expand the first two watches: the this watch and the <reference> watch.
In this case, both the watches provide the same data, as the two watches
are identical. Note that you can watch all object data in this view
(except static data). The grayed-out items are inherited. Collapse these
two watches. The remaining two watches, the local variable watches,
watch the values of valueOneDouble and valueTwoDouble.

8 Click the Step Into button to step into the subtractValues() method.

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-15

S t e p 5 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

9 Expand the watches on valueOneDouble and valueTwoDouble.

The two values are equal. You did not enter two equal values into the
program’s two input fields.

10 Set a watch on subtractStringResult, the result of the subtraction. This
value, a String, is written to the output label. To set the watch, click the
Add Watch button on the debugger toolbar, and enter
subtractStringResult in the Expression field. Click OK. You may have to
scroll the Data watches view to see the watch.

11 Click the Step Into button three times to step to the following line in the
editor:

subtractResultDisplay.setText(subtractStringResult)

In the Data watches view, subtractStringResult is set to 0.0 instead of
1.0, as expected.

Note You could also use the Evaluate/Modify dialog box to examine the
value of subtractStringResult. To do this, choose Run|Evaluate/
Modify. Enter subtractStringResult into the Expression input field, and
click Evaluate. The result of the evaluation is displayed in the Result
field. Note that the display is similar to expanding the watch. Click
Close to close the dialog box.

12 Step into the method two more times. The execution point returns to
the line where the next method, multiplyValues(), is called.

13 Look at the call to the subtractValues() method, the line before the
execution point. Notice that valueOneDouble is being passed twice,
instead of valueOneDouble and valueTwoDouble. Change the second
parameter to valueTwoDouble.

Saving files and running the program

Save your changes and run the program:

1 Click the Save All button on the toolbar.

2 Click the Reset Program button on the debugger toolbar.

3 Click the Run Project button on the toolbar. Enter values. The program
runs. When you enter values and press the Compute Values button, the
subtracted value is now correct. However, if you look carefully at
remaining results, you’ll see that the divided result is also incorrect. Go
to Step 6 to find and fix the error.

17-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 6 : F i x i n g t h e d i v i d e V a l u e s () m e t h o d

4 Exit the program. Remove the message pane tabs by right-clicking the
Application1 tab and choosing Remove “Application1” Tab.

In the next step, you’ll find and fix another runtime error.

Step 6: Fixing the divideValues() method
In this step of the tutorial, you will find and fix another of three runtime
errors. You will set a breakpoint, step into a method, and learn how to use
tool tips and ExpressionInsight to locate errors.

In the previous step, you found and fixed an error with the call to the
subtractValues() method. Now, when you run the program again, you
may notice that the divided result is also incorrect. For example, if you
enter 4 in the Value 1 field and 2 in the Value 2 field, the divided result is
8.0 instead of 2.0.

To find this error, we’ll first set a breakpoint, step into the questionable
method, and use ExpressionInsight and tool tips.

1 Choose Run|View Breakpoints to remove the breakpoint you set in
Step 5. In the Breakpoints dialog box, right-click the following
breakpoint:

class DebugTutorial.Frame1; line 213; (unverified)

Choose Remove Breakpoint and click the Close button to close the
dialog box.

2 Use the Find/Replace Text dialog box to locate the call to the
divideValues() method.

3 Set a breakpoint on this line. Right-click the breakpointed line, and
choose Breakpoint Properties to open the Breakpoint Properties dialog
box.

4 Click the Log Message option. In the Evaluate Expression input field,
enter:

System.out.println("divideValues method reached")

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-17

S t e p 6 : F i x i n g t h e d i v i d e V a l u e s () m e t h o d

The message will be written to the Console output, input and errors
view when the specified breakpoint is reached. If the Stop Execution
option is also selected the program will stop. The dialog box will look
similar to this:

Click OK to close the dialog box.

5 Click the Debug button on the main toolbar.

6 Enter 4 in the Value 1 input box and 2 in the Value 2 input box when the
program’s UI is displayed. Press Compute Values. Remember, before
you can examine the results, the debugger takes control and is
displayed in the message pane.

7 Go to the Console output, input and errors view. You’ll see the
message:

Hit breakpoint in class DebugTutorial.Frame1 at line 216
Log Expression: System.out.println("divideValues method reached") = void

During the development cycle, you can use this feature instead of
adding println statements to your code.

8 Go to the Data and code watches view. Notice that most of the watches
are no longer in scope. Right-click an empty area of the view and
choose Remove All.

9 Click the Step Into button to step into the divideValues() method.

17-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 6 : F i x i n g t h e d i v i d e V a l u e s () m e t h o d

10 Click the button three more times, so that you step past the line that
reads:

divideResult = (valueOneDoubleResult * valueTwoDoubleResult)

11 Position the mouse over the variable divideResult in the editor. A tool
tip displaying the value of divideResult pops up. Notice that the value is
incorrect. Based on what you entered, the result should be 2.0.
However, it is 8.0.

You can also press the Ctrl key plus right-click the mouse button to
display ExpressionInsight. This pop-up window shows the expression
name, its type, and its value. If the expression is an object, you can
descend into the object members, as well as use a right-click menu to
set watches, change values, and change base display values. For
example, position the cursor over divideResultDisplay in the next line of
code. Press the Ctrl key plus right-click the mouse button. You will see
the members of the JLabel object. As you scroll down, notice the
grayed-out items: these are inherited.

Click in the editor to close the ExpressionInsight window. The window
will also automatically close if the cursor is repositioned.

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-19

S t e p 7 : F i x i n g t h e o d d E v e n () m e t h o d

12 Carefully read this line of source code (the line immediately before the
execution point):

divideResult = (valueOneDoubleResult * valueTwoDoubleResult)

Can you find the error? The divideResult() method is multiplying
values instead of dividing them.

13 To fix the error, change the * operator to /.

Saving files and running the program

Save your changes and run the program:

1 Remove the breakpoint in the editor.

2 Click the Save All button on the toolbar.

3 Click the Reset Program button on the debugger toolbar.

4 Click the Run Project button on the toolbar. Enter values in the Value 1
and Value 2 input fields. The program runs and the divided value is
now correct. However, if you look carefully at the remaining results,
you may spot the last error. If you enter an odd number in the Value 1
field, the program incorrectly reports that the value is even. If you enter
an even value, the program says it is odd.

5 Exit the program. Remove the Application1 tab from the message pane.

In the next step, you’ll find and fix the last runtime error in this tutorial.

Step 7: Fixing the oddEven() method
In this step of the tutorial, you will find the last of the three runtime errors.
You will use the Evaluate/Modify dialog box to evaluate a method call,
step into and over a method, set a watch, and change a boolean value
on-the-fly to test a theory.

In Step 6, you fixed an error in the divideValues() method. Now, when you
run the program again, you may notice the statement saying whether the
first value is odd or even is incorrect.

For example, if you enter 4 into the Value 1 field, the program reports it is
an odd number. However, if you enter 3, the program says that the value
is even. In this step, you will find and fix this error.

17-20 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 7 : F i x i n g t h e o d d E v e n () m e t h o d

To find this error, we’ll use the Evaluate/Modify dialog box to evaluate
the method that determines if the number is odd or even. Then we’ll set a
watch on the result returned from the method to see if it’s printing to the
screen correctly.

1 Use the Find/Replace Text dialog box to locate the call to the oddEven()
method in Frame1.java. Notice that a variable name also includes the
text OddEven. To find the method, you can turn the Case Sensitive option
on in the dialog box or search for: oddEven(

2 Set a breakpoint on this line:

oddEven(valueOneDouble);

3 Click the Debug button.

4 Enter 3 in the Value 1 input box and 4 in the Value 2 input box when the
program’s UI is displayed. Click the Compute Values button. The focus
returns to the debugger.

5 Choose Run|Evaluate/Modify to open the Evaluate/Modify dialog
box.

Tip You can also right-click in the editor and choose Evaluate/Modify.

Enter oddEven(valueOneDouble) in the Expression input box. Click
Evaluate. You’ll see that the method returns true.

Close the Evaluate/Modify dialog box. Now, we’ll step into the
method in order to evaluate what the true value means.

6 Go to the Data watches view. Set a watch on valueOneIsOdd.

7 Click the Step Into button on the debugger toolbar. When you step into
the oddEven()method, the value of valueOneIsOdd is true, because the
value was initialized to true. (To see the initialization, use the Find Text
dialog box to search for boolean valueOneIsOdd. Use Run|Show
Execution Point to return to the cursor location.)

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-21

S t e p 7 : F i x i n g t h e o d d E v e n () m e t h o d

8 Click Step Into three more times to step further into the method. This
method determines if the value is odd or even. As you step, the value of
valueOneIsOdd remains true. Is this correct? Does the result of (3 modulus
2) equal zero? It actually does not equal zero, and the value of
valueOneIsOdd should be set to false.

9 Right-click valueOneIsOdd in the Data watches view and choose Change
Value to test this theory. The Change Value dialog box is displayed.

Enter false and click OK. The value of valueOneIsOdd is set to false. You
just changed the method’s returned value from true to false.

Click OK to close the dialog box.

10 Click Step Out to step out of the method and return to the calling
location, then click Step Into to trace into the if statement in the next
line of code.

11 Examine the contents of the if statement. It is actually quite simple:

If valueOneIsOdd is true, print the message stating that
the number is even. However, if the value is false, print
the message stating that the number is odd.

12 Click the Step Into button again. The execution point goes to the else
statement, the line that states: “If the value of valueOneIsOdd is false,
print the message stating the number is odd.”

13 Click the oddEven() method in the structure pane to go to the location of
the method in the editor. (You may have to scroll the structure pane to
see the method.)

17-22 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 7 : F i x i n g t h e o d d E v e n () m e t h o d

14 Examine the modulus operation and its results. Are the true/false
results assigned correctly? If you look closely, you’ll notice that the true
and false assignments are actually mixed up. The code is stating that if
the modulus equals zero, the return value is false and the number is
odd. If the modulus does not equal zero, the return value is true and the
number is even. These statements should actually be reversed, so that
the code will read:

if (valueOneDoubleResult % 2 == 0.0)
 {
 valueOneIsOdd = true;
 }
 else valueOneIsOdd = false;

15 Switch the true and false values.

Save your changes and run the program:

1 Save your files.

2 Click the Reset Program button on the debugger toolbar.

3 Run the program again.

4 Enter 3 in the Value 1 input box and 4 in the Value 2 input box. Click the
Compute Values button. The result is correct! The program now
correctly informs you that Value 1 is an odd number.

5 Click File|Exit to exit the program. Remove the Application1 tab.

In the next step, you will see what happens when a runtime exception is
generated.

T u t o r i a l : C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 17-23

S t e p 8 : F i n d i n g r u n t i m e e x c e p t i o n s

Step 8: Finding runtime exceptions
In this step of the tutorial, you’ll see what happens when a runtime
exception is generated. The sample program does not do any error
handling. For example, if you enter a character in the Value 1 or Value 2
fields instead of a number, the program will generate a runtime exception
stack trace. It won’t gracefully tell you that the value was not the expected
format or provide information about valid values.

To see what a runtime exception stack trace looks like,

1 Run the program.

2 Enter eeee in the Value 1 input field. Enter 3 in the Value 2 input field.
Press Compute Values.

3 Minimize the program to view the message pane.

The Application1 tab now displays a NumberFormatException stack trace.
This is a trace of how your program arrived at this exception.

4 Click the first underlined class name in the stack trace to see where the
exception is thrown. In this case, click FloatingDecimal.

JBuilder opens the source code for java.lang.FloatingDecimal and
highlights the line of code where the exception is thrown. You can click
other classes in the stack trace to trace through the steps that brought
the program to this exception.

To handle this exception is beyond the scope of this tutorial. To run the
program again without the exception, just close the program and run it
again entering numeric values.

Congratulations, you have finished this tutorial. You found and fixed syntax
errors, compiler errors, and runtime errors using JBuilder’s integrated
debugger. You also saw an example of a runtime exception stack trace.

For more information on compiling, running, and debugging, read the
following chapters:

• Chapter 6, “Building Java programs”

• Chapter 5, “Compiling Java programs”

• Chapter 7, “Running Java programs”

• Chapter 8, “Debugging Java programs”

17-24 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T u t o r i a l : B u i l d i n g w i t h A n t f i l e s 18-1

C h a p t e r

18
Chapter18Tutorial: Building with Ant files

This tutorial uses features
in JBuilder Enterprise

This tutorial explains how to work with Ant build files to build your
projects. Ant is a Java-based build tool that builds projects as specified by
one or more XML build file. The build files define build targets and build
tasks. For example, a build file might contain separate targets for building
a project and generating Javadoc. You can execute individual targets or
the default target for the project using the Ant build file.

JBuilder automatically recognizes Ant build files named build.xml and
displays these nodes with an Ant icon instead of the usual XML icon. You
can also use the Ant wizard to import Ant files of any name. The targets in
the build.xml file display as child nodes.

In this tutorial, you’ll complete the following tasks:

• Create a project and application.

• Create an Ant build file.

• Execute Ant build targets.

• Execute the default Ant target.

• Introduce an error in a Java source file and examine the Ant error
messages.

• Add a target to the Project menu.

• Modify Ant properties.

• Add custom Ant libraries.

See also

• “Building with external Ant files” on page 6-7

• The Jakarta project at Apache: http://jakarta.apache.org/ant

• Ant documentation in the JBuilder extras/ant/docs/ directory

18-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 1 : C r e a t i n g a p r o j e c t a n d a p p l i c a t i o n

The Accessibility options section in the JBuilder Quick Tips contains tips
on using JBuilder features to improve JBuilder’s ease of use for people
with disabilities.

For information on documentation conventions used in this tutorial and
other JBuilder documentation, see “Documentation conventions” on
page 1-4.

Step 1: Creating a project and application
In this step, you’ll use JBuilder wizards to create a project and application.

1 Choose File|New Project to open the Project wizard.

2 Enter AntProject in the Name field and click Finish to close the wizard
and create the project.

3 Choose File|New to open the object gallery and double-click the
Application icon on the General page to open the Application wizard.

4 Accept the defaults and click Finish to close the wizard.

Step 2: Creating the Ant build file
Now that you have a project to build, you’ll create an Ant build file and
use it to build the project. JBuilder automatically recognizes files named
build.xml as Ant build files and displays Ant icons for those nodes in the
project pane.

First, create the Ant build file.

1 Choose File|New File.

2 Enter build in the Name field, choose XML as the file extension from the
Type drop-down list, and click OK. The new file is open in the editor.

3 Click OK to save the new file to your project.

4 Enter the following text or copy and paste it into the editor:

<?xml version="1.0"?>
<!DOCTYPE project>
<project name="AntProject" default="dist" basedir=".">
<property name="src" value="src"/>
<property name="build" value="build"/>
<property name="dist" value="dist"/>

<target name="init">
<tstamp/>
<mkdir dir="${build}"/>
</target>

T u t o r i a l : B u i l d i n g w i t h A n t f i l e s 18-3

S t e p 3 : E x e c u t i n g i n d i v i d u a l t a r g e t s

<target name="compile" depends="init">
<javac srcdir="${src}" destdir="${build}"/>
</target>

<target name="dist" depends="compile">
<mkdir dir="${dist}/lib"/>
<jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>
</target>

<target name="clean">
<delete dir="${build}"/>
<delete dir="${dist}"/>
</target>

</project>

5 Save the project.

6 Choose Project|Add Files/Packages, browse to the AntProject directory
on the Explorer tab, select build.xml, and click OK to add it to your
project.

7 Examine the build.xml file to understand what it does:

• project: includes a project name, the default target to run if none of
the other individual targets are run, and the location of the base
directory.

• properties: Ant targets and tasks are typically “property-aware.”
Properties are also used to pass parameters to tasks without
overriding the existing properties in the build file.

• init target: creates a build directory for the compiled classes.

• compile target: initiates the init target first, then compiles the Java
source files and puts the generated .class files in the build directory.

• dist target: initiates the compile target first, then makes a dist/lib/
directory, and creates a JAR file in that directory.

• clean target: deletes the build and dist directories.

Step 3: Executing individual targets
Next, you’ll run two targets in the build.xml file. First, you’ll run the init
target to create the build directory for the compiled .class files. Then,
you’ll run the clean target to remove the output and the build directory.

1 Click the Refresh button on the project pane toolbar and expand the
Ant node in the project pane to expose the child nodes, which are the
Ant targets.

18-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 4 : E x e c u t i n g t h e d e f a u l t t a r g e t

2 Right-click the Ant init target in the project pane and choose Make. This
target creates the build directory, where the compiled .class files will
go.

3 Examine the messages output to an Ant node in the message pane. The
init target successfully created the build directory.

StdOut
 Buildfile: build.xml
 init:
 [mkdir] Created dir: C:\Documents and Settings\ktaylor\jbproject\
 AntProject\build
 BUILD SUCCESSFUL
 Total time: 2 seconds

4 Right-click the Ant compile target in the project pane and choose Make.
This target compiles the .java source files, generates the .class files, and
puts them in the build directory created by the init target.

5 Right-click the Ant clean target and choose Make to remove all the
build output, including the build directory.

Step 4: Executing the default target
If you choose the Ant node and do a Make on it, JBuilder runs the default
Ant target, in this case, the dist target. The default target is specified in the
<project> element. The dist target creates the dist/lib/ and generates a JAR
file in that directory. Notice that the dist target depends on compile, which
depends on init. So when the dist target is executed, it executes the
compile target, which in turn executes the init target. Due to these
dependencies, the execution order of targets is: init, compile, dist.

Next, you’ll execute the default target in the build file.

1 Right-click the Ant build.xml node and choose Make to execute the
default target, dist.

2 Look in the message pane to see the results of the build:
StdOut
 Buildfile: build.xml
 init:
 [mkdir] Created dir: C:\Documents and Settings\ktaylor\
 jbproject\AntProject\build
 compile:
 [javac] Compiling 2 source files to C:\Documents and Settings\ktaylor\
 jbproject\AntProject\build
 dist:
 [mkdir] Created dir: C:\Documents and Settings\ktaylor\
 jbproject\AntProject\dist\lib
 [jar] Building jar: C:\Documents and Settings\ktaylor\jbproject\
 AntProject\dist\lib\MyProject-20020826.jar
 BUILD SUCCESSFUL
 Total time: 4 seconds

T u t o r i a l : B u i l d i n g w i t h A n t f i l e s 18-5

S t e p 5 : H a n d l i n g e r r o r s w i t h A n t

Because you previously removed the classes and their directory with
the clean target, the init target recreates the build directory. The compile
target once again compiles the .class files. Lastly, the dist target creates
the dist/lib/ directory and generates a JAR file in that directory.

Step 5: Handling errors with Ant
In this step, you’ll introduce an error in a Java source file, make the Ant
build file, and use the error messages to navigate to the error in the source
file.

1 Open Application1.java in the editor.

2 Find the main() method and add comment tags as shown:

//public static void main(String[] args) {

3 Right-click build.xml and choose Make.

4 Examine the message pane and notice that it displays a StdErr node
that displays error messages. In this example, adding comment tags
before the main() method produces two errors:

StdErr
 "Application1.java": [javac] C:\Documents and Settings\ktaylor\jbproject\
 AntProject\src\antproject\Application1.java:43: error #203: illegal
 start of type at line 43
 [javac] try {
 [javac] ^
 "Application1.java": [javac] C:\Documents and Settings\ktaylor\jbproject\
 AntProject\src\antproject\Application1.java:51: error #202: 'class' or
 'interface' expected at line 51
 [javac] }
 [javac] ^

5 Choose an error message in the message pane to highlight it in the
editor. Double-click an error message to move the cursor to the line of
code in the editor.

Tip If you are using the Borland Java compiler (bmj) to build your Ant file,
compiler errors are listed by number. For a complete list of compiler
errors by number, see “Compiler error messages” in online help. The
Use Borland Java Compiler option is on by default. See “Setting Ant
properties” on page 6-12.

6 Remove the comment tags from the main() method before going to the
next step.

18-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 6 : A d d i n g a t a r g e t t o t h e P r o j e c t m e n u

Step 6: Adding a target to the Project menu
In this step, you’ll add the Ant clean target to the Project menu and
reorder the build targets on the Project menu. For more information on
configuring this menu, see “Configuring the Project menu” on page 6-18.

1 Choose Project|Project Properties to open the Project Properties dialog
box.

2 Choose the Build tab, then the Menu Items tab.

3 Click the Add button to open the Add Build Target To Menu dialog
box.

4 Choose the Ant target, clean (build.xml), not the JBuilder target, Clean.

5 Click OK to add clean as a build target on the Project menu.

6 Choose the Move Up button to move the Ant clean target up in the list
below Make. Now, the clean target will be the second menu item on the
Project menu.

Tip The first two menu items on the Project menu have configurable key
bindings, which you can modify in the Keymap Editor (Tools|Editor
Options|Editor|Customize).

7 Choose OK to close the Project Properties dialog box.

8 Choose Project|clean to clean the project. Notice in the message pane
that the clean target was executed.

T u t o r i a l : B u i l d i n g w i t h A n t f i l e s 18-7

S t e p 7 : S e t t i n g A n t p r o p e r t i e s

Step 7: Setting Ant properties
There may be cases where you want to change Ant properties in the build
file without overwriting it. You can do this by passing parameters in the
Ant properties dialog box.

1 Right-click the Ant build.xml node and choose Properties.

2 Choose the Ant tab and change the Log Level option to Verbose, which
provides more information in the message pane.

3 Click the Add button to the right of the Properties list.

4 Choose build from the Name drop-down list and enter test in the Value
field.

18-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 7 : S e t t i n g A n t p r o p e r t i e s

5 Click OK twice to close both dialog boxes.

Now, when you execute the Ant compile target, a test directory is
created and the class files are created in the test directory instead of the
build directory.

6 Right-click the Ant compile target and choose Make.

7 Examine the output in the message pane. There is more information,
because the verbose option is used. The results tell you that the test
directory was created when the init target executed, instead of the build
directory. You should see something similar to this in the message
pane:

StdOut
 Apache Ant version 1.5 compiled on July 9 2002
 Buildfile: build.xml
 Detected Java version: 1.4 in: C:\jbuilder\jdk1.4\jre
 Detected OS: Windows 2000
 parsing buildfile build.xml with URI = file:C:/Documents and Settings/ktaylor
 /jbproject/AntProject/build.xml
 Project base dir set to: C:\Documents and
 Settings\ktaylor\jbproject\AntProject
 Override ignored for property build
 Build sequence for target `compile' is [init, compile]
 Complete build sequence is [init, compile, clean, dist]
 init:
 [mkdir] Created dir: C:\Documents and Settings\ktaylor\
 jbproject\AntProject\test
 compile:
 [javac] antproject\Application1.java added as C:\Documents and
 Settings\ktaylor\
 jbproject\AntProject\test\antproject\Application1.class doesn't exist.
 [javac] antproject\Frame1.java added as C:\Documents and Settings\ktaylor\
 jbproject\AntProject\test\antproject\Frame1.class doesn't exist.
 [javac] Compiling 2 source files to C:\Documents and Settings\ktaylor\
 jbproject\AntProject\test
 BUILD SUCCESSFUL
 Total time: 4 seconds

Next, you’ll set an option to always build the project with Ant when you
use the Project Make or Project Rebuild command. First, you’ll clean the
project.

1 Choose Project|clean. As you can see from the message pane, all of the
Ant output is deleted, including the class files and the test directory.

2 Right-click AntProject.jpx in the project pane and choose Clean. This
removes the classes in the classes directory that the JBuilder build
system generated. If you look in your operating system’s file manager,
you’ll see that the classes and the classes directory generated by
JBuilder have been deleted.

3 Right-click the Ant build.xml node and choose Properties.

T u t o r i a l : B u i l d i n g w i t h A n t f i l e s 18-9

S t e p 8 : A d d i n g c u s t o m A n t t a s k s t o y o u r p r o j e c t

4 Click the Ant tab and check the Always Run Ant When Building Project
option on the Ant page and click OK to close the dialog box. Now when
you choose Project|Make Project, Ant runs as part of the JBuilder build
process.

5 Choose Project|Make Project to build the project.

Ant runs the default Ant target and JBuilder builds with Make. The Ant
messages displayed in the message pane tell you that new directories
were created, classes compiled, and a JAR created. Look in your
operating system’s file manager to see that JBuilder also generated the
class files in the classes directory when Make was executed.

Step 8: Adding custom Ant tasks to your project
There may be cases in which you have custom libraries that contain
custom Ant build tasks. For example, you might have build tasks in your
Ant build file that need to execute tools such as ANTLR Translator
generator, Java mail, or JUnit testing. You can create a custom library that
includes the paths to these tools and add it to your project. You can also
use a different version of Ant by adding a library with the Ant JARs. If
you don’t specify any Ant JARs, JBuilder uses the Ant delivered in the
JBuilder lib directory.

You can add these libraries to your project on the Build page of Project
Properties as follows:

1 Choose Project|Project Properties.

2 Choose the Build tab and then the Ant tab.

3 Click the Add button to open the Select A Library dialog box.

4 Select an existing library in the list or click the New button to open the
New Library wizard and create a library. Click OK to close the Select A
Library dialog box and add the library to the project. For more
information on creating libraries, see “Adding projects as required
libraries” on page 3-4.

5 Select a library in the list and choose the Move Up or Move Down
button if you want to change its order in the list. Libraries are searched
in the order listed.

6 Click OK to close the Project Properties dialog box.

Now that you’ve completed the tutorial, see “Building with external Ant
files” on page 6-7 to learn more about running Ant build files in JBuilder.

18-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T u t o r i a l : R e m o t e d e b u g g i n g 19-1

C h a p t e r

19
Chapter19Tutorial: Remote debugging

This tutorial is a feature of
JBuilder Enterprise

This step-by-step tutorial shows you how to

• Use remote debugging features to attach to a program already running
on a remote computer.

• Debug using cross-process stepping.

• Use preset configurations to debug both a client and server process.

The tutorial uses the sample project that is provided in the
<jbuilder>\samples\RMI folder. The sample is an RMI application, created in
JBuilder. Before running this tutorial, make sure that you have installed
the samples folder.

This tutorial assumes the following:

• You are using a Windows computer.

• You are familiar with compiling, running, and debugging. If not, work
through the tutorial in Chapter 17, “Tutorial: Compiling, running, and
debugging.” You can also read the following chapters:

• Chapter 6, “Building Java programs”
• Chapter 5, “Compiling Java programs”
• Chapter 7, “Running Java programs”
• Chapter 8, “Debugging Java programs”

• You are familiar with client/server processes in JBuilder.

• You have read Chapter 9, “Remote debugging.”

• You are comfortable with DOS windows and with running commands
from the command line.

19-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 1 : O p e n i n g t h e s a m p l e p r o j e c t

To run this tutorial, you need

• Two computers running on a network. JBuilder must be installed on
one; JDK 1.3 or higher must be installed on the other. In this tutorial,
the computer with JBuilder will be called the “client” computer. The
computer with just the JDK will be called the “remote” computer. This
computer will run the server.

• The host name or IP address of the remote computer. This ID is usually
set up by the network administrator.

• A way to transfer files from the client computer to the remote
computer.

Note To run the sample without debugging it, follow the instructions in the
project’s HTML file, SimpleRMI.html.

The Accessibility options section in the JBuilder Quick Tips contains tips
on using JBuilder features to improve JBuilder’s ease of use for people
with disabilities.

For information on documentation conventions used in this tutorial and
other JBuilder documentation, see “Documentation conventions” on
page 1-4.

Step 1: Opening the sample project
This tutorial uses the sample project that is provided in the samples\RMI
folder of your JBuilder installation. Before running this tutorial, make sure
that you have installed the samples folder.

In this step, you will open the project file. To open the sample project,

1 Choose File|Open Project. The Open Project dialog box is displayed.

2 Navigate to the <jbuilder>\samples\RMI folder.

3 Double-click SimpleRMI.jpx. The project is opened in the project pane.
The files in the project are listed in the project pane. This project
consists of six files:

• SimpleRMI.html - The HTML file that provides a descriptive overview
of the project. This file provides instructions on creating an RMI
application in JBuilder and running it.

T u t o r i a l : R e m o t e d e b u g g i n g 19-3

S t e p 2 : S e t t i n g r u n t i m e a n d d e b u g g i n g c o n f i g u r a t i o n s

• SimpleRMI.policy - The security policy file. This file specifies the rights
of the RMI server to listen for and accept client requests over a
network.

• SimpleRMIClient.java - The client class that connects to the server
object.

• SimpleRMIImpl.java - The class that implements the RMI server
interface.

• SimpleRMIInterface.java - The RMI interface.

• SimpleRMIServer.java - The server class that creates an instance of the
Impl class.

In Step 2, you will set client and server runtime and debug configurations.

Step 2: Setting runtime and debugging configurations
In this step, you will set runtime and debugging configurations for the
client and server. For more information on runtime and debugging
configurations, see “Setting runtime configurations” on page 7-6 and
“Setting debug configuration options” on page 8-68.

To set the configurations for this tutorial, use the dialog box pages listed in
the following table.

Table 19.1 Dialog box pages for setting client and server runtime and
debugging configurations

Runtime Configuration
Properties dialog box
page Applies To Description

Run page Server (runs on the
remote computer)

Configures the run
parameters for the RMI
server.

Debug page Server (runs on the
remote computer)

Configures how the server on
the client computer attaches
to the remote server process.

Run page Client (runs on the
computer with JBuilder)

Configures the run
parameters for the RMI client.

19-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 2 : S e t t i n g r u n t i m e a n d d e b u g g i n g c o n f i g u r a t i o n s

To set runtime configurations for the server,

1 Choose Run|Configurations. The Run page of the Project Properties
dialog box is displayed.

2 Choose the configuration called Windows Run SimpleRMIServer.

3 Press Edit to display the Run page of the Runtime Configuration
Properties dialog box.

4 Make sure the VM Parameters codebase argument points to the
location of the server class files. In a typical Windows installation, this
will be the classes folder in the <jbuilder>\samples\RMI folder:

-Djava.rmi.server.codebase=file:C:\<jbuilder>\samples\RMI\classes\

Note The last backslash in the argument, after the classes entry, is required.

5 Make sure the security policy argument in the VM Parameters field
points to the location of the security policy file. The policy file specifies
the rights of the RMI server to listen for and accept RMI client requests
over a network. In a typical Windows installation, this will be the
<jbuilder>\samples\RMI folder.

-Djava.security.policy=file:C:\<jbuilder>\samples\RMI\SimpleRMI.policy

6 Make sure the main class is set to:

com.borland.samples.rmi.SimpleRMIServer

T u t o r i a l : R e m o t e d e b u g g i n g 19-5

S t e p 2 : S e t t i n g r u n t i m e a n d d e b u g g i n g c o n f i g u r a t i o n s

7 When you’re finished, the Run page for the server should look similar
to this:

To set the remote debugging configuration for the server,

1 Click the Debug tab.

2 Click the Enable Remote Debugging option and then the Attach option.

3 Enter the name of the computer where the server will be running in the
Host Name field.

4 Leave the Transport Type as dt_socket.

5 Enter the address of the remote computer in the Address field. You will
be using this number again when you run the server on the remote
computer (in “Step 5: Starting the RMI Registry and server on the
remote computer” on page 19-10). For the purposes of this tutorial,
leave this set to 3999.

19-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 2 : S e t t i n g r u n t i m e a n d d e b u g g i n g c o n f i g u r a t i o n s

6 When you’re finished, the Debug page for the server should look
similar to this:

7 Click OK to close the Runtime Configuration Properties dialog box for
the server.

Next, you’ll set runtime configurations for the client.

1 On the Run page of the Project Properties dialog box, choose the
configuration called Windows Run SimpleRMIClient.

2 Press Edit to display the Run page of the Runtime Configuration
Properties dialog box.

3 Make sure the argument in the VM Parameters field points to the
location of the security policy file. In a typical Windows installation,
this will be the <jbuilder>\samples\RMI folder.

-Djava.security.policy=file:C:\<jbuilder>\samples\RMI\SimpleRMI.policy

4 Make sure the main class is set to:

com.borland.samples.rmi.SimpleRMIClient

5 In the Application Parameters field, enter the name of the remote
computer. This is the name you entered into the Host Name field of the

T u t o r i a l : R e m o t e d e b u g g i n g 19-7

S t e p 3 : S e t t i n g b r e a k p o i n t s

Debug page of the Runtime Configuration Properties dialog box for the
server (see the previous section).

6 When you’re finished, the Run page for the client should look similar to
this:

7 Click OK to close the Runtime Configuration Properties dialog box.

8 Click OK again to close the Project Properties dialog box.

In the next step, you will set the breakpoints for the client and the server.

Step 3: Setting breakpoints
In this step, you will set a line breakpoint in the client process and a
cross-process breakpoint in the server process. The line breakpoint will
cause the client to pause when the cross-process breakpoint is about to be
called. The cross-process breakpoint will pause the server. This technique
allows you to step into a server process from a client process.

To set a line breakpoint in the client process,

1 Double-click SimpleRMIClient.java in the project pane. It is opened in the
editor.

2 Use the Search|Find to find the string Date d. The cursor will be placed
on the following line:

Date d = myServerObject.getDate();

19-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 3 : S e t t i n g b r e a k p o i n t s

3 Click the gutter, the gray area to the left of the line of code, to set a
breakpoint on the line.

To set a cross-process breakpoint in the server process,

1 Choose Run|Add Breakpoint|Add Cross Process Breakpoint. The Add
Cross-Process Breakpoint dialog box is displayed.

2 Choose the ellipsis button to the right of the Class Name field.

3 In the Search For field of the Select Classes dialog box, enter
SimpleRMIImpl.

4 Click OK to close the dialog box when the class is selected.

5 Choose the ellipsis button to the right of the Method Name field.

6 Choose getDate() in the Select Method dialog box.

7 Click OK to close the dialog box.

8 Leave the Actions option in the Add Cross-Process Breakpoint dialog
box set to Stop Execution.

T u t o r i a l : R e m o t e d e b u g g i n g 19-9

S t e p 4 : C o m p i l i n g t h e s e r v e r a n d c o p y i n g s e r v e r c l a s s f i l e s t o t h e r e m o t e c o m p u t e r

9 The Add Cross-Process Breakpoint dialog box should look like this:

10 Click OK to close the dialog box.

In the next step, you will compile the server and copy the server class files
to the remote computer.

Step 4: Compiling the server and copying server class files to the
remote computer

This step tells you how to compile the server and copy the server class
files to the remote computer.

To compile the server files in JBuilder, choose Project|Make Project
“SimpleRMI.jpx”. The status bar shows when the project has been built.

Notice that an expand/collapse icon is displayed by SimpleRMIImpl.java in
the project pane. The RMI compiler created the stub class,
SimpleRMIImpl_Stub.java. Do not edit this file as it is auto-generated.

Go to a DOS window and look in the <jbuilder>/samples/RMI folder. The
folder should now contain a classes folder. The classes folder contains a
hierarchy of folders that follow the package structure. The server .class
files are stored in the classes/com/borland/samples/rmi folder. The classes
folder also includes the dependency cache and Generated Source folders.

You need to copy the server class files to the remote computer. For the
purposes of this tutorial, you can copy the entire RMI folder to the remote
computer, to a new folder called RMI. To do this, you can either:

• Copy files to a network, then copy them to the remote computer.

• Copy files to diskette and copy them to the remote computer.

• FTP files to the remote computer.

19-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 5 : S t a r t i n g t h e R M I R e g i s t r y a n d s e r v e r o n t h e r e m o t e c o m p u t e r

Important From this point forward, if you update source files on your client
computer (the one running JBuilder), you must re-copy the .class files to
the remote computer. If you fail to do so, your source files and compiled
files will not match, causing invalid errors.

In the next step, you’ll start the RMI Registry and the server on the remote
computer.

Step 5: Starting the RMI Registry and server on the remote
computer

This step tells you how to start the RMI registry on the remote computer
and start the server in debug mode on the remote computer. You need to
be aware of the RMI settings as well as the debug settings in the Java
command line that starts the server.

To start the RMI registry on the remote computer,

1 Open a 4DOS or 4NT window.

2 Change to the <jdk>\bin folder.

3 Start the RMI Registry by entering the following command:

start rmiregistry

The RMI Registry starts in a separate process. If the registry does not
start, you may be out of available memory. Exit other applications that
may be running, then close the DOS window and try again.

To start the server on the remote computer,

1 Start a Command window. The Java command line is more than 256
characters; you will not be able to run it in a standard 4DOS or 4NT
window. Start the Command window from the Start menu: click Run
and enter command. For NT computers, enter cmd.

2 Make sure the <jdk>\bin folder is in your path.

3 Go to the root of the folder that contains the RMI sample.

4 Enter the following command at the prompt. This command will start
the server in debug mode and suspend its execution. You may want to
place the command in a batch file or shell script. If you do, make sure
the command contains no line breaks.

java -Xdebug -Xnoagent -Djava.compiler=NONE
-Djava.rmi.server.codebase=file:\rmi\classes\
-Djava.security.policy=file:\rmi\SimpleRMI.policy
-Xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=y -classpath
d:\rmi\classes\ com.borland.samples.rmi.SimpleRMIServer

T u t o r i a l : R e m o t e d e b u g g i n g 19-11

S t e p 6 : S t a r t i n g t h e s e r v e r p r o c e s s a n d t h e c l i e n t i n d e b u g m o d e

The command line you enter to run the server takes both RMI and
debugger arguments. A description of each parameter follows.

In the next step, you’ll use the debugger to attach to this running server
and step into the server’s getDate() method where the cross-process
breakpoint was set.

Step 6: Starting the server process and the client in debug mode
and stepping into the cross-process breakpoint

This step tells you how to start both the server process and the client in
debug mode in JBuilder, and then step into the cross-process breakpoint.
Once you’ve started stepping, JBuilder allows you to step between the
client and server. You will:

• Start the server process on the client computer in debug mode.

• Start the client on the client computer in debug mode.

• Step into the cross-process breakpoint on the server running on the
remote computer.

Table 19.2 Command line RMI and debugger arguments

Parameter Description

java The command to run the Java VM.

-Xdebug Runs the VM in debug mode.

-Xnoagent Does not use debug agent.

-Djava.compiler=NONE Does not use any JITs.

-Djava.rmi.server.codebase=
file:\rmi\classes\

Identifies the location of the server’s class files.

-Djava.security.policy=
file:\rmi\SimpleRMI.policy

Identifies the location of the java security policy file.

-Xrunjdwp:transport=dt_socket,server=y,
address=3999,suspend=y

Debugger options, where:
• transport: The transport method. Needs to match what is set on

the Runtime Properties Debug page for the server - see “Step 2:
Setting runtime and debugging configurations” on page 19-3.

• server: Runs the VM in server mode.
• address: The port number through which the debugger

communicates with the remote computer. Needs to match
what is set on the Runtime Properties Debug page for the
server - see “Step 2: Setting runtime and debugging
configurations” on page 19-3.

• suspend: Indicates whether the program is suspended
immediately when it is started.

-classpath d:\rmi\classes\ The class path.

com.borland.samples.rmi.SimpleRMIServer The runnable server file (includes the package name).

Chapter 19Step 6: Starting
the server process

and the client in
debug mode

Chapter 19Step 6: Starting
the server process

and the client in
debug mode

19-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 6 : S t a r t i n g t h e s e r v e r p r o c e s s a n d t h e c l i e n t i n d e b u g m o d e

To start the server process in debug mode on the client computer (the
computer running JBuilder),

1 Click the down arrow to the right of the Debug Program button on the
main toolbar.

2 Choose the Windows Run SimpleRMIServer configuration.

Note You do not need to start the RMI Registry on the client computer. It’s
already running on the remote computer.

3 The debugger starts and pauses execution.

4 Click the Resume Program button on the debugger toolbar.

The message SimpleRMIImpl ready is displayed on the remote computer.
The name of the computer and the address are displayed on the
debugger tab at the bottom of the JBuilder AppBrowser window.

To start the client in debug mode on the client computer (the computer
running JBuilder),

1 Right-click the down arrow to the right of the Debug Program button
on the main toolbar.

2 Choose the Windows Run SimpleRMIClient configuration.

3 The debugger starts, and stops execution at the call to the server’s
getDate() method. (You set a breakpoint on this line in Step 2.)

T u t o r i a l : R e m o t e d e b u g g i n g 19-13

S t e p 6 : S t a r t i n g t h e s e r v e r p r o c e s s a n d t h e c l i e n t i n d e b u g m o d e

To step into the cross-process breakpoint,

1 Click the debugger tab for the SimpleRMIClient process.

2 Click the Step Into icon on the client’s debugger toolbar to step into the
server-side breakpointed method. If you use Step Over, the debugger
will not stop.

3 Click the Step Into button two more times. The message SimpleRMIImpl
getDate() is displayed on the remote computer.

4 Continue to click Step Into on the SimpleRMIClient tab until the client
runs to completion. The SimpleRMIClient process in the debugger will
look like this:

The output from the server running on the remote computer will look
like this:

SimpleRMIImpl ready
SimpleRMIImpl.getDate()

5 To exit the server on the remote computer, press Ctrl + C from the
Command window. To close the RMIRegistry, click the close button on
the RMIRegistry window.

While starting the server or client in debug mode in JBuilder, you may see
one of the following error messages:

Congratulations! You have completed the tutorial. Using preset runtime
configurations, you ran a RMI server on a remote computer. You then
debugged the program using JBuilder’s remote debugging features.

Table 19.1 RMI client/server error messages

Error message Description

connection refused The RMI Registry on the remote computer
might not yet be running. Stop all processes
and run the RMI Registry on the remote
computer by entering start rmiregistry from
the command line. (The <jdk>\bin folder must
be in your path.) Restart the remote server and
begin the debug process again.

Java exception:
java.rmi.NotBoundException
SimpleRMIImpl

You haven’t yet started the server debug
process. Click the Resume Program button
on the server’s debugger toolbar. Start the
client again in debug mode.

19-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T u t o r i a l : V i s u a l i z i n g c o d e w i t h t h e U M L b r o w s e r 20-1

C h a p t e r

20
Chapter20Tutorial: Visualizing code with

the UML browser
This tutorial uses features

in JBuilder Enterprise.
This step-by-step tutorial shows you how to use JBuilder’s UML features
to navigate and analyze your code. UML is helpful in examining code,
analyzing application development, and communicating software design.
JBuilder uses UML diagrams for visualizing code and browsing classes
and packages. UML diagrams can help you quickly grasp the structure of
unknown code, recognize areas of over-complexity, and increase your
productivity by resolving problems more rapidly.

For more information on UML features in JBuilder, see Chapter 11,
“Visualizing code with UML.” For definitions of UML terms, see “Java
and UML terms” on page 11-2.

In this tutorial, you’ll accomplish such tasks as:

• Viewing a UML package diagram

• Viewing a UML class diagram

• Adding library references

• Filtering UML diagrams

The tutorial uses the sample project that is provided in the samples/
DataExpress/ProviderResolver folder of your JBuilder installation. Before
running this tutorial, make sure that you have installed the samples folder.
For users with read-only access to JBuilder samples, copy the samples
directory into a directory with read/write permissions.

This sample demonstrates how to build a custom DataExpress Provider
and Resolver. It uses a simple application which displays the data
provided by ProviderBean to the TableDataSet in a JdbTable. It also includes a
JdbNavToolBar whose Save button can be pressed to save changes back to

20-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 1 : C o m p i l i n g t h e s a m p l e

the text file, which contains sample data, via ResolverBean. For more
information on the sample, read the project notes file in the sample:
ProviderResolver.html. The sample includes the following files:

• ProviderBean.java: provides data from a simple, undelimited text file
into a TableDataSet.

• ResolverBean.java: replaces the data in the original text file.

• TestApp.java: a simple application which displays the data provided by
ProviderBean to the TableDataSet in a JdbTable. It also includes a
JdbNavToolBar whose Save button can be pressed to save changes back to
the text file via ResolverBean.

• TestFrame.java: the application UI.

• data.txt: the text file with some sample data in it.

• DataLayout.java: an interface that describes the structure of data.txt.

See also

• “Java and UML terms” on page 11-2

• “JBuilder UML diagrams defined” on page 11-7

The Accessibility options section in the JBuilder Quick Tips contains tips
on using JBuilder features to improve JBuilder’s ease of use for people
with disabilities.

For information on documentation conventions used in this tutorial and
other JBuilder documentation, see “Documentation conventions” on
page 1-4.

Step 1: Compiling the sample
In this step, you’ll compile the project. It’s always best to compile before
you choose the UML tab, so the UML diagram is up-to-date and accurate.
When you choose the UML tab, JBuilder loads the class files to determine
their relationships, which the UML browser then uses to obtain the
package and class information for the UML diagrams.

Begin by opening the sample:

1 Choose File|Open Project and browse to the ProviderResolver sample:
<jbuilder>/samples/DataExpress/ProviderResolver/ProviderResolver.jpx

2 Choose Project|Make Project to compile the project.

Important Before viewing the UML diagram for a project or file, you must always
compile the project to see the complete UML diagram. JBuilder then
loads the compiled classes to build the diagrams. Choose Project|Make
Project before choosing the UML tab.

T u t o r i a l : V i s u a l i z i n g c o d e w i t h t h e U M L b r o w s e r 20-3

S t e p 2 : V i e w i n g a U M L p a c k a g e d i a g r a m

Step 2: Viewing a UML package diagram
Now that the project is compiled, JBuilder can create the UML diagrams
from the generated class files. Begin by looking at the UML package
diagram.

1 Double-click the com.borland.samples.dx.providerresolver package node
in the project pane to open it in the content pane. It opens by default
with the Package tab active, which displays the package summary.

Note If the package node is not available, set the Enable Source Package
Discovery And Compilation option on the General page of the Project
Properties dialog box (Project|Project Properties).

2 Choose the UML tab to view the UML package diagram. When you
choose the UML tab, JBuilder loads the classes to determine their
relationships and builds the UML diagram.

20-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 2 : V i e w i n g a U M L p a c k a g e d i a g r a m

The UML package diagram represents a package as a rectangle with a
tab and the full package name at the top. The current package,
com.borland.samples.dx.providerresolver, is in the center with its
dependencies on other packages to either side. Dependencies in the
UML diagram are represented by a dashed line pointing from the
central package to the package it’s dependent on. This central package,
which has a bright green background, lists all of the classes within it.
The outer packages, which have a darker green background, list only
the classes that com.borland.samples.dx.providerresolver is dependent on.

3 Examine the structure pane to the lower left of the UML diagram. There
are two folders that can appear with package diagrams: Dependencies
and Reverse Dependencies. This package only has dependencies, so
there is only one folder.

Note For structure pane folder definitions, see “JBuilder UML diagrams
defined” on page 11-7.

4 Open the Dependencies folder to see the packages, classes, and
interfaces that the central package is dependent on. You can use the
structure pane to navigate to other UML diagrams, as you’ll see later.

Note For structure pane icon definitions, see “JBuilder structure pane and
UML icons” in online help.

In the following steps, navigate to a package that also has reverse
dependencies: com.borland.dbswing.

1 Navigate to the com.borland.dbswing package, which is on the top left
side of the diagram. There are two ways to do this:

• Double-click the package name in the UML diagram.

• Open a folder in the structure pane, right-click the package name,
and choose Open.

This may take awhile to load. Now, the com.borland.dbswing package is
the central package in the UML diagram. Notice that there are dashed
lines pointing in both directions in this package diagram. The
com.borland.dbswing package has dependencies and reverse dependencies.
See “JBuilder UML diagrams defined” on page 11-7 for definitions of
these terms.

T u t o r i a l : V i s u a l i z i n g c o d e w i t h t h e U M L b r o w s e r 20-5

S t e p 3 : V i e w i n g a U M L c l a s s d i a g r a m

2 Look at the top left package, com.borland.samples.dx.providerresolver.
This package has a dashed line pointing to the central package, instead
of away from the central package. This is a reverse dependency. The
TestFrame class in the com.borland.samples.dx.providerresolver package
uses dbSwing components for the application UI, such as JdbNavToolBar
and JdbTable. Since TestFrame has a dependency on com.borland.dbswing,
then com.borland.dbswing has a reverse dependency on
com.borland.samples.dx.providerresolver.

3 Look at the folders in the structure pane. There are two folders for this
package: Dependencies and Reverse Dependencies.

4 Double-click the Reverse Dependencies folder in the structure pane and
expand the com.borland.samples.dx.providerresolver package node to see
that TestFrame is also listed here as a reverse dependency of
com.borland.dbswing.

5 Double-click TestFrame in the UML diagram or the structure pane to see
the dbSwing components it uses, as well as the other components from
other packages. Now, you’re viewing a UML class diagram with
TestFrame as the central class and the components listed directly below
the class name.

6 Choose View|Hide All to enlarge the UML browser and hide the
project and structure panes.

Step 3: Viewing a UML class diagram
In this step, you’ll navigate to another class diagram, in this case an
abstract class called Provider. In UML diagrams, abstract classes are
displayed in an italic font.

1 Scroll to the right and double-click the Provider class located in the
com.borland.dx.dataset package, the second package on the right in the
TestFrame.java UML diagram. Now, Provider is displayed as the central

20-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 3 : V i e w i n g a U M L c l a s s d i a g r a m

class in a UML class diagram. Notice that Provider is highlighted in the
diagram indicating that it’s selected.

Also, notice that all diagrams of the current package,
com.borland.dx.dataset, display with bright green backgrounds by
default, whereas other packages are a darker green.

The UML class diagram displays the class in the center of the diagram.
Surrounding the class is the package with the package name in a tab at
the top. The class itself is divided into several sections separated by
horizontal lines in the following order:

• Class name at the top: abstract classes are italic.

• Fields and properties*: static fields are underlined.

T u t o r i a l : V i s u a l i z i n g c o d e w i t h t h e U M L b r o w s e r 20-7

S t e p 3 : V i e w i n g a U M L c l a s s d i a g r a m

• Methods and getters* and setters*: abstract methods are italic, static
methods are underlined.

• Properties* (optional) at the bottom.

*By default, properties are displayed in the bottom section. The Display
Properties Separately option is set on the UML page of the IDE Options
dialog box (Tools|IDE Options). If this option is turned off, properties
are displayed in the appropriate sections with fields and methods. See
“Setting IDE Options” on page 11-19.

Note Icons indicate whether a field, method, or property is private, public, or
protected. For icon definitions, see “JBuilder structure pane and UML
icons” in online help. You can also change these icons to generic UML
visibility icons. See “Setting IDE Options” on page 11-19.

Here are a few other things to notice in the diagram:

• Dependencies and reverse dependencies are on the right indicated
with dashed lines.

• Associations are on the left indicated with solid lines.

• Extended (parent) classes and implemented interfaces are on the top.
Extends relationships are represented by a solid line with a large
triangle. Implements relationships use a dashed line with a large
triangle.

• Extending classes are on the bottom. Extends relationships are
represented by a solid line with a large triangle.

• Interfaces are represented by default with orange rectangles with
their names in italics.

• Classes are represented by default with yellow rectangles.

See “JBuilder UML diagrams defined” on page 11-7 for definitions of
these terms.

2 Look at the methods listed in the third section of the central Provider
class. One of the methods, provideData(), is an abstract method.
Therefore, the method name is in an italic font.

3 Double-click the name of the provideData() method in the UML diagram
to read the comments in the source code. This abstract method, which
is inherited by the ProviderBean class at the bottom of the UML diagram,
provides the data for a DataSet. Also, notice that this method is in the
abstract Provider class.

20-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 3 : V i e w i n g a U M L c l a s s d i a g r a m

4 Click the UML tab to return to the Provider UML class diagram. Below
the central class are extending classes. ProviderBean, which provides the
data to read into a TableDataSet, extends (inherits from) the abstract
class Provider.

5 Right-click the ProviderBean class at the bottom of the diagram and
choose Go To Source to examine some of its methods. See that it
inherits the provideData() method from Provider’s abstract provideData()
method and extends Provider.

6 Choose the UML tab to view the ProviderBean class diagram. Inheritance
is represented in UML diagrams as a solid line with a large triangle that
points to the parent. Because ProviderBean inherits from and extends
Provider, there is a solid line with a large triangle that points from
ProviderBean to Provider at the top of the diagram.

7 Position the mouse over the provideData() method in the ProviderBean
class. A tool tip shows the method name with its parameters and return
type. This is a convenient way to learn more about a method without
leaving the diagram.

provideData(StorageDataSet, boolean): void

8 Double-click the Provider class at the top of the diagram or right-click
and choose Go To diagram to return to its class diagram.

Now, look at the last section of the central Provider class diagram. By
default, properties are listed separately. You can change the display of
properties on the UML page of the IDE Options dialog box (Tools|IDE
Options). A property exists when a method name following “is”, “get”, or
“set” matches a field name. For example, in this diagram, parameterRow is a
field with get and set methods. Therefore, parameterRow is a property.

1 Right-click the parameterRow field at the bottom of the Provider class in
the UML diagram and choose Go To Source.

2 Choose View|Show All, so you can see the structure pane again.

3 Examine the methods in the structure pane and look for any “is”, “get”,
or “set” methods. There are two methods with the same name as the
parameterRow field: getParameterRow() and setParameterRow(ReadWriteRow).

T u t o r i a l : V i s u a l i z i n g c o d e w i t h t h e U M L b r o w s e r 20-9

S t e p 4 : A d d i n g r e f e r e n c e s f r o m l i b r a r i e s

Step 4: Adding references from libraries
Sometimes, you might want to include references from project libraries to
see a complete diagram of all relationships. By default, JBuilder’s UML
diagrams do not display the references from the project libraries.
Typically, libraries provide services to the applications that are built upon
them but don’t know anything about their users. To show these
relationships, you need to include references from the libraries.

When you choose the Include References From Project Library Class Files
option on the General page of the Project Properties dialog box (Project|
Project Properties), references from project library classes are also
included in the UML diagram. After selecting this option, JBuilder
automatically refreshes the diagram. For more information on this option,
see “Including references from project libraries” on page 11-18.

Caution If the libraries are large, the UML diagram may take some time to load.
JBuilder must first load all the classes and the dependency information to
determine the relationships.

Before choosing the Include References From Project Library Class Files
option, review the Provider class diagram. Then, change the project
properties and see how the Provider diagram changes.

1 Choose the UML tab to return to the Provider UML class diagram. There
is a package on the left containing the ReadWriteRow class and a package
on the bottom of the diagram containing the ProviderBean class. When
you add the references from the libraries, more packages and classes
are added to the diagram in these areas.

20-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 4 : A d d i n g r e f e r e n c e s f r o m l i b r a r i e s

2 Right-click ProviderResolver.jpx in the project pane and choose
Properties to open the Project Properties dialog box.

3 Choose the General tab.

4 Check the Include References From Project Library Class Files option at
the bottom of the page.

5 Click OK to close the dialog box. The UML diagram refreshes and now
displays additional references from the project libraries.

6 Review the UML diagram and notice the additional packages and
classes added to the left and bottom of the diagram. On the left,
StorageDataSet has been added to the com.borland.dx.dataset package.
On the bottom, another com.borland.dx.sql.dataset package with two
classes is added. These classes at the bottom of the diagram extend
Provider. The classes in the com.borland.dx.sql.dataset package are not

T u t o r i a l : V i s u a l i z i n g c o d e w i t h t h e U M L b r o w s e r 20-11

S t e p 4 : A d d i n g r e f e r e n c e s f r o m l i b r a r i e s

directly used by the classes in the project, but because they extend
Provider, they do have a relationship to the project.

7 Click and drag the diagram without releasing the mouse to move the
diagram to the center. Look at both com.borland.dx.dataset packages on
the left and right. Notice that StorageDataSet appears in two places.
Provider has two relationships with StorageDataSet: a reverse association
and a dependency. It also appears in the appropriate folders in the
structure pane.

Now, take a moment to examine the associations in a UML class diagram.
Associations appear on the left side of a class diagram. Provider has two
associations: one association and one reverse association. These associations
appear in the appropriate folders in the structure pane. For definitions of
these terms, see “JBuilder UML diagrams defined” on page 11-7.

1 Open the Associations folder in the structure pane of the Provider class
diagram and expand the package node. Here you see that ReadWriteRow
is an association.

2 Select ReadWriteRow in the structure pane to highlight it in the diagram.
Associations in the diagram are represented by a solid line that points
from the central class to the association. Provider has an association with
ReadWriteRow, because it has the following reference to ReadWriteRow:

private ReadWriteRow parameterRow;

3 Open the Reverse Associations folder in the structure pane and expand
the package node. Here you see that StorageDataSet is a reverse
association.

20-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 5 : F i l t e r i n g U M L d i a g r a m s

4 Select StorageDataSet in the structure pane to highlight it in the diagram.
A reverse association is represented by a solid line that points from the
association to the central class. StorageDataSet has a reference to
Provider:

private Provider provider;

5 Right-click StorageDataSet in the diagram and choose Go To Source to
navigate directly to the source code.

6 Do a search in the source code for provider (Search|Find) and choose
Find All. Examine the search results in the message pane and see that
there are many references to the Provider class, as well as getProvider()
and setProvider() methods.

7 Right-click the Search Results tab in the message pane and choose
Remove “Search Result” Tab to close the message pane.

Step 5: Filtering UML diagrams
In some cases, you might want to remove packages and classes from your
UML diagrams to simplify them. You can do this in the Project Properties
dialog box (Project|Project Properties). For more information, see “Setting
project properties” on page 11-17.

The filtering of packages and classes is set on the Class Filters page of the
Project Properties dialog box. The filtering determines what classes and
packages are excluded from the UML diagrams in the project. Once you
set the filters, you can enable and disable filtering from the UML
browser’s context menu.

1 Choose the com.borland.samples.dx.providerresolver package file tab at
the top of the content pane. Notice the many java and javax packages in
the diagram. These packages also appear in the structure pane in the
Dependencies folder.

2 Right-click ProviderResolver.jpx in the project pane and choose
Properties to open the Project Properties dialog box.

3 Choose the Class Filters tab in the dialog box.

4 Exclude the java and javax packages from the
com.borland.samples.dx.providerresolver package diagram as follows:

a Choose UML Diagram from the Name drop-down list.

b Choose the Add button to open the Select Package/Class dialog box.

c Choose java and click OK.

d Choose the Add button again.

T u t o r i a l : V i s u a l i z i n g c o d e w i t h t h e U M L b r o w s e r 20-13

S t e p 5 : F i l t e r i n g U M L d i a g r a m s

e Choose javax and click OK. Both packages now appear in the
Exclude Package/Class list.

f Click OK to close the dialog box.

5 Review the diagram and notice that the java and javax packages are
now removed from the diagram. Only the borland packages remain in
the diagram.

6 Examine the structure pane to see that filtering doesn’t remove the java
and javax packages from the structure pane, although the packages do
display in a lighter color to indicate that they aren’t in the diagram.

7 Right-click in the UML browser and notice that Enable Class Filtering is
checked on the context menu.

8 Turn off the filtering by choosing Enable Class Filtering to uncheck it.
The packages reappear in the diagram.

Important If you set filtering in the Project Properties dialog box, all of the
diagrams in the project are filtered. Disabling filtering in one diagram
does not disable it for all diagrams. If you navigate to another diagram
in the project, filtering is still enabled. Once you close the file or
package, the setting reverts back to the project-level setting.

Congratulations, you’ve completed the UML tutorial. There are many
other features available in JBuilder’s UML browser, such as:

• Refactoring code
• Saving and printing UML diagrams
• Viewing Javadoc
• Customizing UML diagrams

20-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 5 : F i l t e r i n g U M L d i a g r a m s

See also

• Chapter 12, “Refactoring code symbols”

• “Creating images of UML diagrams” on page 11-20

• “Printing UML diagrams” on page 11-20

• “Viewing Javadoc” on page 14-20

• “Setting IDE Options” on page 11-19

T u t o r i a l : C r e a t i n g a n d r u n n i n g t e s t c a s e s a n d t e s t s u i t e s 21-1

C h a p t e r

21
Chapter21Tutorial: Creating and running

test cases and test suites
Unit testing is a feature of

JBuilder Enterprise.
This tutorial shows you how to create a test case and a test suite to test
existing code. The tutorial uses the ProviderResolver sample in <jbuilder>/
samples/DataExpress as an example of an application under test. Before
running this tutorial, make sure that you have installed the samples folder.

Note The tutorial in Chapter 20, “Tutorial: Visualizing code with the UML
browser” also uses the ProviderResolver sample. If you plan to run both
of these tutorials, it is recommended that you either run that tutorial first,
or make a copy of the ProviderResolver sample before running this one
since the modifications made in this tutorial may change some of the
diagrams described in the UML tutorial.

This tutorial assumes you are familiar with Java, JUnit, and the JBuilder
IDE. For more information on Java, see Getting Started with Java. For more
information on JUnit, see the JUnit web site, http://www.junit.org. For
more information on the JBuilder IDE, see “The JBuilder environment” in
Introducing JBuilder.

Note You must have Build Target set to either Make or Rebuild in your current
runtime configuration for the steps in this tutorial to work properly. Make
is the default setting. For more information about runtime configurations,
see “Setting runtime configurations” on page 7-6.

The Accessibility options section in the JBuilder Quick Tips contains tips
on using JBuilder features to improve JBuilder’s ease of use for people
with disabilities.

For information on documentation conventions used in this tutorial and
other JBuilder documentation, see “Documentation conventions” on
page 1-4.

21-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 1 : O p e n i n g a n e x i s t i n g p r o j e c t

Step 1: Opening an existing project
In this step, you open the ProviderResolver sample. For the purposes of
this tutorial, ProviderResolver is the application under test.

1 Select File|Open Project to display the Open Project dialog box.
2 Click the Samples folder icon.
3 Open the DataExpress and ProviderResolver nodes in the tree.
4 Select ProviderResolver.jpx and click OK.

The ProviderResolver sample is now open.

Step 2: Creating skeleton test cases
This step creates the skeleton of a test case using the Test Case wizard. The
skeleton test case class will contain a test method for one of the methods in
the ResolverBean class. Later you’ll add a second test method. When writing
unit tests in the real world, you may want to test more extensively, but for
the purpose of this tutorial, you’ll only implement two test methods.

1 Select Project|Rebuild Project “ProviderResolver.jpx”. This makes the
methods of the project’s classes available to the Test Case wizard.

2 Double-click ResolverBean.java in the project pane to open it in the editor.

3 Select File|New to display the object gallery.

4 Select Test Case from the Test page of the object gallery and click OK.
The Test Case wizard is displayed with ResolverBean selected as the
class to test.

5 Select the resolveData(DataSet) method of ResolverBean. The Test Case
wizard looks like this:

T u t o r i a l : C r e a t i n g a n d r u n n i n g t e s t c a s e s a n d t e s t s u i t e s 21-3

S t e p 3 : I m p l e m e n t i n g a t e s t m e t h o d t h a t t h r o w s a n e x p e c t e d e x c e p t i o n

6 Click Finish.

7 Open the com.borland.samples.dx.providerresolver package node in the
project pane to see the test case that has been created. It’s called
TestResolverBean.java. Double-click this file to open it in the editor.

Note If the package node is not available, set the Enable Source Package
Discovery And Compilation option on the General page of the Project
Properties dialog box (Project|Project Properties).

Step 3: Implementing a test method that throws an expected
exception

Sometimes it is useful to write a test case to verify that an expected
exception is thrown. Your test code should be specific enough to
determine whether the exception that is thrown is the same exception
that’s expected. The test should fail if another exception is thrown.

In this step and the next one, you’ll fill in the skeleton test case by writing
test code. This step implements the testResolveData() method in
TestResolverBean. To implement the method:

1 Replace the body of the testResolveData() method with the following
code:

 resolverBean = new ResolverBean();
 com.borland.dx.dataset.DataSet dataSetView1=
 new com.borland.dx.dataset.StorageDataSet();

 try{
 resolverBean.resolveData(dataSetView1);
 fail("failed: resolveData() did not throw an exception");
 }
 catch(com.borland.dx.dataset.DataSetException e){
 System.out.println("TestResolverBean.testResolveData(): success");
 }
 catch(Exception e){
 System.err.println("Exception thrown: "+e);
 fail("wrong exception: " + e.getClass().toString());
 }

2 Click the Save All button on the toolbar, or select File|Save All.

3 Run the test now by right-clicking TestResolverBean.java in the project
pane and selecting Run Test Using Defaults from the context menu.
When the test finishes running, the progress bar of the test runner is
green and green check mark icons are displayed next to the names of
the test class and the test case in the test runner to indicate that the test
passed.

21-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 3 : I m p l e m e n t i n g a t e s t m e t h o d t h a t t h r o w s a n e x p e c t e d e x c e p t i o n

The test code throws a DataSetException as expected because the data set
isn’t open. When the expected DataSetException is thrown, the exception is
caught and the test passes because there was no assertion failure or error.
If another class of exception were thrown, it would be caught by the
second catch clause which calls the fail() method to ensure the test fails
when the wrong exception is thrown.

You also added another line of test code after the line in the try block that
is expected to throw an exception. If no exception is thrown, this line
executes. The call to fail() in this line of code causes the test to fail and the
string which is passed to it explains the failure. Of course, this new line of
code can only be executed if an exception is not thrown.

Viewing the test failure output

To demonstrate what a failure looks like in the test runner:

1 Comment out the following line of code in the try block:

resolverBean.resolveData(dataSetView1);

2 Click the Save All button on the toolbar, or select File|Save All.

3 Run the test now by right-clicking TestResolverBean.java in the project
pane and selecting Run Test Using Defaults from the context menu. The
progress bar turns red to indicate there has been at least one test failure.
The Test Failures tab is displayed. A failure is listed for the
testResolveData() method. This is indicated by a red X icon.

4 Click the testResolveData() node in the Test Failures page. This reveals
the following output:

junit.framework.AssertionFailedError: failed: resolveData() did not
throw an exception

...(Click for full stack trace)...
 at com.borland.samples.dx.providerresolver.TestResolverBean.testResolveData
(TestResolverBean.java:26)

...

Note how the string passed to the fail() method was carefully chosen to
provide useful information in the event of a failure. This is a good
objective to keep in mind when writing your tests.

Fixing the test so it passes

You commented out a line of code that is necessary for the test to pass. The
purpose of this was to see what a failure looks like in the test runner. To
make the test pass again:

T u t o r i a l : C r e a t i n g a n d r u n n i n g t e s t c a s e s a n d t e s t s u i t e s 21-5

S t e p 4 : W r i t i n g a s e c o n d t e s t m e t h o d

1 Uncomment the line of code that calls
resolverBean.resolveData(dataSetView1).

2 Click the Save All button on the toolbar, or select File|Save All.

If you run the test again at this point, it should pass. You can try this now
if you like.

Step 4: Writing a second test method
In this step you will write a method to test the value of one of the
constants defined in the interface DataLayout, which is implemented by
ResolverBean. This test verifies that the value of the constant is being set
correctly. To do this:

1 Add the following method to the TestResolverBean class:

public void testConstant() {
 resolverBean = new ResolverBean();
 assertEquals(6, resolverBean.COLUMN_COUNT);
}

2 Click the Save All button on the toolbar, or select File|Save All.

The code you just added tests the value of the COLUMN_COUNT constant in the
DataLayout interface to make sure it matches the expected value. In order to
save time in this tutorial, only this one constant is tested, but it should give
you an idea of some possible tests you could write to verify expected
values. If you run the test now, it should pass since the value is being set
correctly.

Step 5: Creating a test suite
A test suite is a collection of tests that should be run as a group. In this
step, you will create a test suite using the Test Suite wizard. This test suite
will call TestResolverBean. Normally, a test suite calls more than one test
case, but to save time in this tutorial, you have only created one test case.
If you had more than one test case, the process for creating a suite that
calls several test cases is the same.

1 Select File|New from the menu.

2 Select Test Suite from the Test page of the object gallery and click OK.

3 Select TestResolverBean.java as the test case to include in the test suite.
Use the Add button to add it if necessary. If you had other test cases,

21-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 5 : C r e a t i n g a t e s t s u i t e

you could also add them at this stage. The Test Suite wizard looks like
this:

4 Click Next.

5 Type ProviderResolverSuite as the Class Name. Now the Test Suite
wizard looks like this:

6 Click Finish. A ProviderResolverSuite.java file is added to your project.

7 Double-click ProviderResolverSuite.java in the
com.borland.samples.dx.providerresolver package in the project pane to
open it. Note the following line of code in the suite() method:

 suite.addTestSuite(
 com.borland.samples.dx.providerresolver.TestResolverBean.class);

If you later want to add other test cases to this suite, you would write a
line of code similar to this one for each test case, substituting the class
name of the new test case for TestResolverBean.

T u t o r i a l : C r e a t i n g a n d r u n n i n g t e s t c a s e s a n d t e s t s u i t e s 21-7

S t e p 6 : R u n n i n g t e s t s

Step 6: Running tests
In this step you will run the test suite you just created. The process for
running a test suite is the same as for running a test case except that when
you run a test suite, it automatically runs all the test cases in the suite. To
run your test suite:

1 Right-click ProviderResolverSuite.java in the project pane and select Run
Test from the context menu. The test runs.

2 Examine the output. JBTestRunner looks like this:

The top tab at the left of the JBTestRunner page in the message view is
the Test Hierarchy view. Note that the tree shown in this view indicates
that all the tests passed. The icons for the tests are all green check
marks. Under the node for ProviderResolverSuite, you will see a
subnode for your test case. If you had other test cases, there would be
one subnode for each test case. Expand the test case node to see the
individual tests. Click on a test case or individual test node to see the
results for it.

3 Click the Test Failures tab. There is currently no output in this view. If
there were failures, it would list them and show the output generated
by their failed assertions.

4 Click the Test Output tab. This tab lists any output from the tests. The
output of the test case you wrote in this tutorial is:

TestResolverBean.testResolveData(): success

Above this, the Test Output tab also shows the command that was used
to run the tests.

You can also debug tests by right-clicking the test in the project pane and
selecting Debug Test from the context menu. The test debugger works just
like the regular debugger, so it is not discussed in this tutorial. The only
difference is that when debugging a test the Test Hierarchy and Test
Failures tabs from JBTestRunner are displayed in addition to the regular
debugger UI. For more information on the debugger, see Chapter 8,
“Debugging Java programs.”

Congratulations! You’ve completed the tutorial on creating and running
test cases and test suites. For more detailed information on unit testing,
see Chapter 13, “Unit testing.”

21-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

T u t o r i a l : W o r k i n g w i t h t e s t f i x t u r e s 22-1

C h a p t e r

22
Chapter22Tutorial: Working with

test fixtures
Unit testing is a feature of

JBuilder Enterprise.
This tutorial illustrates how to use the JDBC Fixture wizard and the
Comparison Fixture wizard to create fixtures for use in your unit tests.
Fixtures are shared code that can be used by multiple unit test classes to
perform routine tasks. This tutorial also shows you how to use the
Comparison Fixture and the JDBC Fixture together in a test case.

This tutorial assumes you are familiar with Java, JUnit, JDataStore, and
the JBuilder IDE. For more information on Java, see Getting Started with
Java. For more information on JUnit, see the JUnit web site, http://
www.junit.org. For more information on JDataStore, see JDataStore
Developer’s Guide. For more information on the JBuilder IDE, see “The
JBuilder environment” in Introducing JBuilder.

Note You must have Build Target set to either Make or Rebuild in your current
runtime configuration for the steps in this tutorial to work properly. Make
is the default setting. For more information about runtime configurations,
see “Setting runtime configurations” on page 7-6.

The Accessibility options section in the JBuilder Quick Tips contains tips
on using JBuilder features to improve JBuilder’s ease of use for people
with disabilities.

For information on documentation conventions used in this tutorial and
other JBuilder documentation, see “Documentation conventions” on
page 1-4.

22-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 1 : C r e a t i n g a n e w p r o j e c t

Step 1: Creating a new project
1 Select File|New Project to display the Project wizard.

2 In the Name field, enter a project name, fixturestutorial.

3 Click Finish to close the Project wizard and create the project. You do
not need to make any changes to the defaults on Steps 2 and 3 of the
wizard.

A new project is created.

Step 2: Creating a Data Module
In this step you will create a DataModule class to serve as the class under
test. When writing unit tests in a real world situation, in most cases you
will already have some code you want to test. For the purposes of this
tutorial, we’ll create some sample code and then test it in the steps that
follow.

To create the Data Module:

1 Select File|New.

2 Select Data Module from the General page of the object gallery. Click
OK. The Data Module wizard opens.

3 Accept the default Package and Class Name, uncheck Invoke Data
Modeler, and click OK. A new Data Module is created.

4 Add the following import statement to the top of the DataModule1.java
file, just after the line that reads package fixturestutorial;:

import com.borland.dx.sql.dataset.*;

5 Add the following line of code just after the line that reads private
static DataModule1 myDM;:

Database database1 = new Database();

6 Add the following line of code to the jbInit() method, where <drive>
and <jbuilder> are the actual drive and directory location of your
JBuilder installation:

database1.setConnection(new ConnectionDescriptor
("jdbc:borland:dslocal:<drive>:\\<jbuilder>\\samples\\JDataStore\\
 datastores\\employee.jds",
 "user", "", false, "com.borland.datastore.jdbc.DataStoreDriver"));

T u t o r i a l : W o r k i n g w i t h t e s t f i x t u r e s 22-3

S t e p 3 : C r e a t i n g a c o m p a r i s o n f i x t u r e

7 Add the following method to the Data Module:

public Database getDatabase1() {
 return database1;
}

8 Select Project|Rebuild Project “fixturestutorial.jpx”.

You’ve completed the Data Module. In the following steps, you’ll create
test fixtures and a test case to test this Data Module.

Step 3: Creating a comparison fixture
The Comparison Fixture wizard generates a fixture which is useful for
recording test results and comparing them to previous test results. A
Comparison Fixture extends com.borland.jbuilder.unittest.TestRecorder.
To create a Comparison Fixture:

1 Select File|New from the menu.

2 Click the Test tab of the object gallery. Select Comparison Fixture and
click OK. The Comparison Fixture wizard opens.

3 Accept the default in the Package field.

4 Enter MyComparisonFixture as the Class Name.

5 Accept the default for the comparison data directory location.

6 Check Echo Output To Console and Verbose Output. The Comparison
Fixture wizard looks like this:

22-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 4 : C r e a t i n g a J D B C f i x t u r e

7 Click OK. A Comparison Fixture class called MyComparisonFixture is
created. Expand the fixturestutorial node in the project pane to see it.

Note If the package node is not available, set the Enable Source Package
Discovery And Compilation option on the General page of the Project
Properties dialog box (Project|Project Properties).

8 Double-click MyComparisonFixture.java in the project pane to open it in
the editor (it’s in the fixturestutorial package). Note the following line
of code:

super.setMode(UPDATE);

This line of code sets the output mode for the Comparison Fixture. Here
are the possible values of the constants passed to setMode():

• UPDATE - The comparison fixture compares new output to an existing
output file, or creates the output file if it does not exist and records
output to it.

• COMPARE - The comparison fixture always compares new output to the
output that already exists.

• RECORD - The comparison fixture records all output, overwriting any
previous output existing in the output file.

• OFF - The comparison fixture is disabled.

Tip If an existing output file contains incorrect data, set the output mode to
RECORD after fixing the problem. Once you have recorded the desired
output, set the mode back to UPDATE.

Step 4: Creating a JDBC fixture
The JDBC Fixture wizard generates a fixture which is useful for managing
connections to JDBC data sources.

To create a JDBC fixture:

1 Select File|New from the menu.

2 Click the Test tab of the object gallery. Select JDBC Fixture and click
OK. The JDBC Fixture wizard opens.

3 Accept the defaults for Package, Class Name, and Base Class and click
Next.

4 Select the following driver: com.borland.datastore.jdbc.DataStoreDriver

5 Enter or browse to the following URL: jdbc:borland:dslocal:<drive>\
<jbuilder>\samples\JDataStore\datastores\employee.jds (where <drive>
and <jbuilder> are replaced with your actual JBuilder location.)

6 Enter user for the User Name.

T u t o r i a l : W o r k i n g w i t h t e s t f i x t u r e s 22-5

S t e p 5 : M o d i f y i n g t h e J D B C F i x t u r e t o r u n S Q L s c r i p t s

7 Click Test Connection. You should see a Success message to the right of
the Test Connection button. The JDBC Fixture wizard looks like this:

If the connection fails, it may be because you don’t have the correct
JDataStore license information in the JDataStore License Manager. The
JDataStore License Manager is available from the File menu of
JDataStore Explorer.

8 Click Finish. A JDBC Fixture class called JdbcFixture1 is created.

9 Double-click JdbcFixture1.java in the project pane to open it in the
editor. Notice the setUp() and tearDown() methods in this fixture. In the
next step, you will use these methods to run SQL scripts to manage
data that could be used in your tests.

Step 5: Modifying the JDBC Fixture to run SQL scripts
In this step you will modify the setUp() and tearDown() methods of the
JDBC Fixture to make them run SQL scripts that automatically create test
data before the tests are run and delete the test data when the tests are
finished. To do this:

1 Make sure JdbcFixture1.java is open in the editor.

2 Add the String variables shown in bold to the fixture:

public class JdbcFixture1 extends JdbcFixture {

 String createSQL =
 "create table TESTTABLE (i int, j int);"+
 "insert into TESTTABLE values(1, 2);"+
 "insert into TESTTABLE values(2, 3);"+

22-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 6 : C r e a t i n g a t e s t c a s e u s i n g t e s t f i x t u r e s

 "insert into TESTTABLE values(3, 4);"+
 "insert into TESTTABLE values(4, 5);";

 String deleteSQL =
 "drop table TESTTABLE;";

These String variables contain SQL statements which will be used to
manage test data.

3 Add the code shown in bold to the setUp() method:

 public void setUp() {
 super.setUp();

 Connection con = getConnection();
 if(con != null)
 runSqlBuffer(new StringBuffer(createSQL), true);

This code gets a connection to the JDataStore and runs the SQL script to
create the test table.

4 Add the code shown in bold to the tearDown() method:

Connection con = getConnection();
if(con != null)
 runSqlBuffer(new StringBuffer(deleteSQL), true);
super.tearDown();

This code gets a connection to the JDataStore and runs the SQL script to
delete the test table.

Step 6: Creating a test case using test fixtures
In this step, you will use the Test Case wizard to include Comparison
Fixture and JDBC Fixture in a test case.

1 Select Project|Rebuild Project “fixturestutorial.jpx”. This makes the
methods of the project’s classes available to the Test Case wizard.

2 Double-click DataModule1.java to open it in the editor.

3 Select File|New from the menu.

4 Click the Test tab of the object gallery. Select Test Case and click OK.
The Test Case wizard opens.

5 Accept fixturestutorial.DataModule1 as the class to test. Don’t select any
methods.

6 Click Next.

7 Accept the default class details in Step 2 of the wizard and click Next.

T u t o r i a l : W o r k i n g w i t h t e s t f i x t u r e s 22-7

S t e p 7 : I m p l e m e n t i n g t h e t e s t c a s e

8 Use the Add button to add MyComparisonFixture and JdbcFixture1 to the
list of selected test fixtures, if they’re not already there. The Test Case
wizard looks like this:

9 Click Finish. A new test case called TestDataModule1 is added to the
project. Open the fixturestutorial node in the project pane to see it.

Step 7: Implementing the test case
In this step, you’ll write the code which calls the two test fixtures to use
them in a test case.

1 Double-click TestDataModule1.java in the project pane to open it in the
editor. The test case instantiates the fixtures and calls their setUp() and
tearDown() methods.

2 Add the following line of code to the import statements at the top of
TestDataModule1.java:

import java.sql.*;

3 Add the following method to the body of the TestDataModule1.java file:

public void testQuery() throws Exception{
 DataModule1 dm = new DataModule1();
 Connection con = dm.getDatabase1().getJdbcConnection();
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM TESTTABLE");
 jdbcFixture1.dumpResultSet(rs, myComparisonFixture);
 dm.getDatabase1().closeConnection();
}

22-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S t e p 8 : A d d i n g a r e q u i r e d l i b r a r y

This method does the following:

• Instantiates DataModule1.

• Gets a Connection using the getJdbcConnection() method of the
DataExpress Database object used in DataModule1.

• Calls the Connection.createStatement() method in preparation for
executing a SQL query.

• Executes the query, storing the result to a ResultSet object.

• Uses the JDBC Fixture’s dumpResultSet() method to dump the result
set to the Comparison Fixture. The dumpResultSet() method gets
passed a ResultSet and a Writer as parameters. A Comparison Fixture
can be used as the Writer because it extends Writer.

• Calls the closeConnection() method of the Database object to make sure
the connection to the data source is closed.

Step 8: Adding a required library
Before the test can run, you need to add the JDataStore library to your
project. To do this:

1 Select Project|Project Properties.

2 Select the Required Libraries tab on the Paths page of the Project
Properties dialog box.

3 Click the Add button.

4 Select the JDataStore library from the list and click OK.

5 Click OK to close the Project Properties dialog box.

Step 9: Running the test case
In this step you will run the test case.

1 Right-click TestDataModule1.java in the project pane and select Run Test
Using Defaults from the menu. The test runs. When the test is run, the
following things happen:

• The test runner instantiates TestDataModule1.

• TestDataModule1.setUp() is called, which in turn calls the setUp()
methods of the two fixtures in the proper order.

T u t o r i a l : W o r k i n g w i t h t e s t f i x t u r e s 22-9

S t e p 9 : R u n n i n g t h e t e s t c a s e

• The testQuery() method is called. Output from the comparison
fixture is recorded to a data file in the same source directory where
TestDataModule1.java is located, the test/fixturestutorial subdirectory
of your project directory.

• The tearDown() method is called, which in turn calls the tearDown()
methods of the two fixtures in the proper order.

Congratulations! You’ve completed the test fixtures tutorial. For more
detailed information on unit testing, see Chapter 13, “Unit testing.”

22-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g c o n f i g u r a t i o n f i l e s f o r n a t i v e e x e c u t a b l e s A-1

A p p e n d i x

A
Appendix ACreating configuration files for

native executables
Configuration files provide flexibility and customization in launching
applications and utilities. For example, they can be used to pass
parameters to the Java Virtual Machine (VM), pass parameters to
OpenTools, debug OpenTools, and customize the launching of
applications.

The launcher for the application contains the appropriate executables, shell
scripts, and/or desktop icons and is used to start the application. Before it
launches, it looks for a configuration file for additional instructions. A
configuration file is a text file containing a list of case-sensitive directives
to be executed before launching an executable.

After finding the configuration file, the launcher processes each line of text
sequentially before the Java VM loads. If the launcher doesn’t find a
configuration file, it opens itself as a file and finds the configuration file
stored inside as a zip comment. The launcher reports an error and
terminates if it can’t read the configuration file, if any line contains an
unrecognized directive, if the mainclass directive is missing, or if the Java
VM fails to start. An error is also reported if the javapath directive is
omitted and a default Java VM location can’t be determined.

The directives in the configuration file might specify the main class, add
JAR files, pass parameters to the VM, add a path entry to the Java
classpath, and so on. Configuration files can also include other
configuration files. For example, the JBuilder launcher refers to the
jbuilder.config file, which then uses the include directive to refer to
jdk.config as shown in the following example.

If you’re creating executables with the Archive Builder or the Native
Executable Builder, you can choose to override the default configuration

A-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

C r e a t i n g c o n f i g u r a t i o n f i l e s f o r n a t i v e e x e c u t a b l e s

file created by these wizards. For more information, see “Deploying with
the Archive Builder” on page 15-17 and “Creating executables with the
Native Executable Builder” on page 15-29.

Sample configuration file

Read the shared JDK definition
include jdk.config

Tune this VM to provide enough headroom to work on large
applications
vmparam -Xms32m
vmparam -Xmx128m

Put the Light AWT wrapper on the boot path
addbootpath ../lib/lawt.jar
addbootpath ../lib/TabbedPaneFix.jar

Add all JAR files located in the patch, lib and lib/ext directory
addjars ../patch
addjars ../lib
addjars ../lib/ext

Include the Servlet 2.3 API from Tomcat 4 in the IDE classpath
addpath ../jakarta-tomcat-4.0.3/common/lib/servlet.jar

Activate the shell integration
socket 8888

Add all the configuration files located in the lib/ext directory
includedir ../lib/ext

JBuilder needs to have access to the environment
exportenv

Start JBuilder using the main class
mainclass com.borland.jbuilder.JBuilder

When you create native executables for your applications with the
JBuilder Archive Builder and Native Executable Builder, you can
customize the launching behavior of the application with a configuration
file on the Executables page. For example, you might want to pass certain
VM and runtime parameters to your application before it launches. For
more information on creating native executables, see “Creating
executables with the Native Executable Builder” on page 15-29.

C r e a t i n g c o n f i g u r a t i o n f i l e s f o r n a t i v e e x e c u t a b l e s A-3

S t a r t i n g t h e V M

Starting the VM
The command to start the VM at the command line has the following
form:

<javapath> [-Xbootclasspath/p:<bootpath>]
 [-classpath <classpath>] <vmparams> <mainclass> {params}

The elements in <angle brackets> represent values derived from the
configuration file and [square brackets] represent optional parts of the
command line that are omitted if relevant path elements aren’t defined in
the configuration file. The {params} component is by default a duplicate of
the launcher’s command-line parameters, but may be altered by some
configuration file directives.

Configuration file requirements
The configuration file must meet certain specifications for it to be parsed
correctly.

File type and location

The configuration file must be a plain, unformatted text file. It should be
in the same directory as the launcher and have the same name with a
.config extension. For example, bcj.exe, located in the JBuilder bin
directory, has a configuration file named bcj.config. If the launcher
doesn’t find a configuration file, it opens itself as a file and finds the
.config file stored inside.

Blank lines and comments

Blank lines and lines beginning with the # character are ignored to allow
the configuration file to be structured and documented.

Path conventions

All paths in the configuration file may be relative or absolute. Relative
paths are relative to the directory containing the configuration file and the
launcher. You can use “..” in the path to move to the parent directory. All
path separators must be forward slashes, regardless of the standard path
separator for the local platform.

A-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D i r e c t i v e s

Directives
The following directives can be specified in the configuration file. Some
are required while others are optional.

javapath

The javapath directive provides the exact location and name of the Java
interpreter. Whether this launcher is an executable or a shared library
depends on the launcher. For example, a Win32 launcher might require
one or the other of the following:

javapath ../jdk14/bin/java.exe
javapath ../jdk14/jre/bin/client/jvm.dll

If a javapath directive isn’t found, the launcher attempts to determine a
default Java VM location in the appropriate platform-dependent manner.

The platform-specific executable file looks for the installed JDK in the
following location:

• Windows: Registry.

• Linux/Solaris: JAVA_HOME environment variable and the user’s
path.

• Mac OS X: pre-defined location for the JDK.

Note You can override this default behavior by specifying the location of the
JDK in a custom configuration file. Then the executable file will look in
the specified location. For more information on configuration files, see
the next step.

The javapath directive is required if the JDK isn’t installed in the usual
location for the platform.

mainclass

The mainclass directive, which is required, provides the fully qualified
class name used to start the application. For example:

mainclass com.borland.jbuilder.JBuilder

addpath

The addpath directive adds a single path to the class path used to start the
application. For example:

addpath ../lib/jbuilder.jar

C r e a t i n g c o n f i g u r a t i o n f i l e s f o r n a t i v e e x e c u t a b l e s A-5

D i r e c t i v e s

Note that the following additional rules apply:

• Paths that refer to a directory or file that doesn’t exist aren’t added.

• Paths already in the class path, boot path, and skip path aren’t added.

• Paths that contain spaces are automatically placed between quotes
when building the command line.

addjars

The addjars directive adds all JAR files in the specified directory to the
class path used to start the application. For example:

addjars ../lib

The same rules applied to the addpath directive apply to each of the paths
added as a result of the addjars directive.

addbootpath

The addbootpath directive adds a single path to the boot path used to start
the Java VM. For example:

addbootpath ../lib/lawt.jar

Note that the following additional rules apply:

• Paths that refer to a directory or file that doesn’t exist aren’t added.

• Paths already in the class path are removed from the class path and
then added to the boot path.

• Paths already in the boot path and the skip path aren’t added.

• Paths that contain spaces are automatically placed between quotes
when building the command line.

addbootjars

The addbootjars directive adds all JAR files in the specified directory to the
boot path used to start the application. For example:

addbootjars ../lib

The same rules applied to the addbootpath directive apply to each of the
paths added as a result of the addbootjars directive.

A-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

D i r e c t i v e s

addskippath

The addskippath directive defines a single path that should never be added
to the boot or class paths used to start the Java VM. This is especially
useful for eliminating individual paths that would otherwise be added by
addjars or addbootjars. For example:

addskippath ../lib/dbswing.jar

Note that the following additional rules apply:

• The path is removed from the class path if it’s already been added.

• The path is removed from the boot path if it’s already been added.

vmparam

The vmparam directive provides parameters that are passed directly to the
Java VM when it’s started. For example, the following directive sets the
minimum and maximum heap sizes to 8MB and 128MB respectively:

vmparam -Xms8m -Xmx128m

The effects of this directive are cumulative. Each subsequent occurrence
adds to the set of parameters that are passed to the VM with spaces
automatically inserted between parameters.

include

The include directive causes the contents of the named file to be parsed
before continuing with the current configuration file. This directive may
be used to nest configuration files to an arbitrary number of levels. The
launcher reports an error and terminates if the named file can’t be read.

include jdk.config

As with all paths in the configuration file, the path may be relative or
absolute. See “Path conventions” on page A-3.

includedir

The includedir directive causes all of the files with a .config extension in
the specified directory to be processed as by the include directive.

includedir ../lib/ext

As with all paths in the configuration file, the path may be relative or
absolute. See “Path conventions” on page A-3.

C r e a t i n g c o n f i g u r a t i o n f i l e s f o r n a t i v e e x e c u t a b l e s A-7

D i r e c t i v e s

copyenv

The copyenv directive causes the contents of an environment variable to be
exposed by defining a corresponding Java environment variable.

copyenv PROMPT

The Java variable has a prefix to avoid namespace collisions, so this
directive defines a Java environment variable named
borland.copyenv.PROMPT whose value is originally derived from the PROMPT
environment variable.

exportenv

The exportenv directive causes the contents of all system environment
variables to be exposed by writing them to a temporary file. Each
invocation of the launcher creates a unique file using the Java .properties
file format to represent a complete name/value pair collection for all
environment variables.

exportenv

The Java environment variable borland.exportenv is set to contain the file
name that the environment has been written to. Once the Java VM
terminates, it’s the launcher’s responsibility to delete the temporary file.

addparam

The addparam directive appends a new parameter or set of parameters to
the existing set of application parameters.

addparam <param>

clearparams

The clearparams directive discards the existing set of application
parameters. This directive typically is used in conjunction with
subsequent addparam directives.

clearparams

restartcode

The restartcode directive specifies an exit code for the Java process that
should be interpreted as a request to restart the launch process. This
directive is typically used by an application that needs to make changes to

A-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

O p t i o n a l a l l - i n - o n e l a u n c h e r s u p p o r t

its configuration, so the launcher must re-read configuration files as if this
were a fresh launch.

restartcode 22

Caution Care must be used with this directive since it can easily lead to an endless
cycle of VMs being started. For safety, a restart exit code of 0 is never
interpreted as a restart request, even if an explicit restartcode 0 directive is
encountered.

Optional all-in-one launcher support
To enable simple application distribution, launcher implementations can
support two optional features:

1 Determining a default Java VM location in the absence of a javavm
directive.

2 If there isn’t an <exename>.config file and the launcher appears to match
the format of a JAR file:

a Automatically adding the executable to the path as if by an explicit
addpath directive

b Read the executable/JAR file’s comment and interpret it as a
configuration file

These two optional features together make it possible to create a
standalone executable containing the launcher, Java code, and any
necessary configuration information including the name of the main class.
All it takes is concatenating the launcher executable with a JAR whose
comment follows the configuration file format.

U s i n g t h e c o m m a n d - l i n e t o o l s B-1

A p p e n d i x

B
Appendix BUsing the command-line tools

JBuilder includes the following command-line tools:

• JBuilder command-line interface

bmj and bcj are features
of JBuilder SE and

Enterprise

• Borland Make for Java (bmj)

• Borland Compiler for Java (bcj)

The JDK includes the following command-line tools:

• javac - the compiler for the Java programming language.

• java - the launcher for the Java applications.

• jar - manages the Java Archive (JAR) files.

• javadoc - extracts code comments and generates HTML documentation
from those comments.

• appletviewer - allows you to run applets outside of the context of a
web browser.

• native2ascii - converts a file of native encoded characters to one with
Unicode escape sequences.

See also

• Sun Tools documentation at http://java.sun.com/j2se/1.4/docs/tooldocs/
tools.html

B-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

S e t t i n g t h e c l a s s p a t h f o r c o m m a n d - l i n e t o o l s

Setting the class path for command-line tools
The class path tells Java tools where to find classes that are not part of the
Java platform. You can set the path to the classes with the -classpath
option or by setting the CLASSPATH environment variable described in the
following topic. The -classpath option temporarily overrides the CLASSPATH
environment variable for the current command-line session. It’s best to
use -classpath as you can set it for each application, and it does not affect
other applications.

Directories listed in the classpath are separated by colons on the UNIX
platform and by semicolons on the Windows platform. You should
always include the system classes at the end of the path. The classpath is
also used to search for sources if no sourcepath is specified.

For more information on class paths, see the Java documentation on
“Setting the classpath.”

For more information on the JBuilder IDE and class paths, see “How
JBuilder constructs paths” on page 4-9 and “Where are my files?” on
page 4-12.

Using the -classpath option

Use the -classpath option to temporarily set the path to your classes.

• UNIX

The -classpath option takes the following form:

% jdkTool -classpath path1:path2

• Windows

The -classpath option takes the following form:

C:>jdkTool -classpath path1;path2

Setting the CLASSPATH environment variable for
command-line tools

The -classpath command-line option only temporarily overrides the
classpath and does not interfere with other applications. However, you
can permanently set the CLASSPATH environment variable.

For more information on the -classpath option and the CLASSPATH
environment variable, see the Java documentation, “Setting the
classpath.”

U s i n g t h e c o m m a n d - l i n e t o o l s B-3

S e t t i n g t h e c l a s s p a t h f o r c o m m a n d - l i n e t o o l s

UNIX: CLASSPATH environment variable
To view the CLASSPATH,

1 Open a command-line shell window.

2 View the current CLASSPATH environment variable using the following
command:

• in csh shell:

env

• in sh shell:

CLASSPATH

To set your CLASSPATH environment variable,

1 Open a command-line shell window.

2 Set the CLASSPATH environment variable using the following
command-line format:

• in csh shell:

setenv CLASSPATH path1:path2

• in sh shell:

CLASSPATH = path1:path2
export CLASSPATH

To clear the CLASSPATH,

1 Open a command-line shell window.

2 clear the CLASSPATH environment variable using the following
command-line format:

• in csh shell:

unsetenv CLASSPATH

• in sh shell:

unset CLASSPATH

Windows: CLASSPATH environment variable
To view the current CLASSPATH, use the set command.

C:> set

To set the CLASSPATH environment variable,

1 Open a DOS window.

2 Modify the CLASSPATH environment variable with the set command.

set CLASSPATH=path1;path2 ...

The paths must begin with the drive letter, for example C:\.

B-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r c o m m a n d - l i n e i n t e r f a c e

To clear your path, you can unset CLASSPATH as follows:

 C:> set CLASSPATH=

This command unsets CLASSPATH for the current DOS session only. Be sure
to delete or modify your startup settings to ensure that you have the right
CLASSPATH settings in future sessions.

If the CLASSPATH variable is set at system startup, the place to look for it
depends on your operating system.

• Windows NT: Choose Start|Settings|Control Panel|System to open
the System Properties dialog box. Click the Environment tab and edit
the CLASSPATH variable in the User Variables section.

• Windows 2000: Choose Start|Settings|Control Panel|System to open
the System Properties dialog box. Click the Advanced tab and click the
Environment Variables button to edit the CLASSPATH variable in the
User Variables section. If you aren’t logged on as administrator to the
local computer, you can only change user variables.

• Windows XP: Choose Start|Settings|Control Panel|System to open
the System Properties dialog box. Click the Advanced tab and click the
Environment Variables button. If you aren’t logged on as administrator
to the local computer, you can only change user variables.

JBuilder command-line interface
JBuilder has a command-line interface that includes such arguments as:

• Building projects

• Displaying configuration information

• Displaying the license manager

• Disabling the splash screen

• Enabling verbose debugging mode for OpenTools authors

Note These arguments vary by JBuilder edition.

JBuilder runs on its own launcher, which is an executable. The executable
can pass arguments to JBuilder.

Accessing a list of options

To access the list of arguments available in your edition of JBuilder, open a
command-line window, navigate to the JBuilder bin directory and type
jbuilder -help.

/<jbuilder>/bin> jbuilder -help

U s i n g t h e c o m m a n d - l i n e t o o l s B-5

J B u i l d e r c o m m a n d - l i n e i n t e r f a c e

JBuilder responds with a list of available arguments:

Available command-line arguments:

 -build: Build JBuilder projects (not available in Personal)
 -help: Display help on command line options
 -info: Display configuration information
 -license: Displays the license manager
 -nosplash: Disable splash screen
 -verbose: Display OpenTools loading diagnostics

To learn more about each argument, enter jbuilder -help <argument_name>,
as shown in this example:

/<jbuilder>/bin> jbuilder -help info

JBuilder responds with this information:

-info
 Displays system configuration information while loading.

You can also list a series of arguments, as shown in this example:

/<jbuilder>/bin> jbuilder -help info nosplash verbose

Syntax

jbuilder [arguments]

Options

• -build <args>

This is a feature of
JBuilder SE and

Enterprise.

Builds one or more JBuilder projects supplied as arguments. All
settings are taken directly from the specified project files. Targets can
be specified and are executed in the order listed. If a target isn’t
specified, make is the default target.

Among the -build arguments, projects are distinguished from targets
by the .jpx or .jpr extension. Any argument that ends with .jpx or .jpr
is assumed to be a project. Any argument that doesn’t have a .jpx or
.jpr extension is assumed to be a target name.

Note If a project fails to complete, the remaining projects aren’t built.

The command is in this form:

jbuilder -build <project1.jpx> [[<target1> <target2> ...]
 [<project2.jpx> [<target3> ...]] ...]

B-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

J B u i l d e r c o m m a n d - l i n e i n t e r f a c e

For example:

jbuilder -build myproject.jpx rebuild

jbuilder -build myproject.jpx clean make myotherproject.jpx

Note If the project is not in the current directory, include the complete path
to the project file. For example, if the projects are located in the /user/
username/ directory, the complete path would be:

jbuilder -build /user/username/myproject.jpx clean make
 /user/username/myotherproject.jpx

The command-line build process reports errors and warnings as text
which can be redirected to another process or file. For example, on the
Windows platform, you could redirect to a text file as follows:

jbuilder -build myproject.jpx > myproject.txt

The command-line build process returns a result code to indicate
failure or success. If the build is successful, a zero value is returned. If
the build fails, a non-zero value is returned. The actual value reported
depends on the error.

In this example, a Windows .BAT file builds the project and echoes an
error or success message:

rem This has to be in a .BAT file:
jbuilder -build myproject.jpx
if not errorlevel 0 echo ERROR
if errorlevel 0 echo SUCCESS
rem End of .BAT file

In addition, the command-line build process allows automation of
build processes with other command-line tools. For example, you could
execute more complicated tasks, such as build another project if the
build is successful and then copy files or cancel the batch file if the
build fails.

See your OS documentation for more information on what scripts or
batch programs your system supports.

• -help <args>

Lists the JBuilder command-line arguments available.

When invoked without arguments, -help displays a list of recognized
command-line arguments and a brief description of each. Invoking
help with one or more arguments provides a more detailed description
of the specified commands and their arguments.

-help <argument1> <argument2> <argument3>

Note that arguments must be typed without a leading hyphen.

U s i n g t h e c o m m a n d - l i n e t o o l s B-7

B o r l a n d C o m p i l e r f o r J a v a (b c j)

• -info

Displays system configuration information while loading.

• -license

Displays the license manager instead of starting JBuilder.

• -nosplash

Disables the splash screen that displays when JBuilder launches.

• -verbose <args>

Displays OpenTools loading diagnostics.

Borland Compiler for Java (bcj)
This is a feature of

JBuilder SE and
Enterprise

Syntax

bcj [options] {file.java}

Description

Borland Compiler for Java (bcj) compiles Java source code into Java
bytecodes from the command line. bcj produces the Java program in the
form of .class files containing bytecodes that are the machine code for the
Java virtual machine. Compiling a source file produces a separate .class
file for each class declaration or interface declaration. When you run the
resulting Java program on a particular platform, such as Windows NT, the
Java interpreter for that platform runs the bytecodes contained in the
.class files.

bcj compiles the selected .java file and any files specified on the command
line. bcj compiles the specified .java file, whether or not its .class file is
outdated. An outdated .class file is one that was not generated by
compiling the current version of its .java source file. Imported .java files
that already have .class files will not be recompiled, even if their .class
files are outdated; after using the bcj command, some imported classes
might still have outdated .class files.

bcj does not check dependencies between files. For more information on
bmj and smart dependencies checking, see “Borland Make for Java (bmj)”
on page B-12 and “Smart dependencies checking” on page 5-2.

To see the syntax and list of options at the command line, enter the bcj
command with no arguments from the <jbuilder>/bin.

You might need to use the -classpath option or set the CLASSPATH
environment variable for the command line, so the required classes are
found.

B-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B o r l a n d C o m p i l e r f o r J a v a (b c j)

See also

• “Compiling from the command line” on page 5-9

• “Setting the CLASSPATH environment variable for command-line
tools” on page B-2

• “Setting the classpath” in the Java Tools documentation

Options

Note Directories listed in paths are separated by colons on the UNIX platform
and by semicolons on the Windows platform. The following examples
represent the UNIX platform.

• -classpath path

The path used to find classes. Overrides the default or the CLASSPATH
environment variable. You should always include the outpath at the
beginning of the path. The classpath is also used to search for sources if
no sourcepath is specified. For example:

bcj -classpath jbproject/testing/classes/test3:
jbproject/project1/classes tester.java

• -d directory

The root directory of the class (destination) file hierarchy. Also referred
to as the “outpath”.

For example, the following statement:

bcj -d jbproject/project1/classes tester.java

causes the class files for the classes defined in the tester.java source file
to be saved in the directory jbproject/project1/classes/test/test3,
assuming that tester.java contains the following package statement:
package test.test3;

Files are read from the class path and written to the destination
directory. The destination directory can be part of the class path. The
default destination matches the package structure in the source files
and starts from the root directory of the source.

• -deprecation

Displays all deprecated classes, methods, properties, events, and
variables used in the API.

If a warning is displayed when compiling, indicating that some
deprecated APIs were used, you can turn this option on to see all
deprecated APIs.

U s i n g t h e c o m m a n d - l i n e t o o l s B-9

B o r l a n d C o m p i l e r f o r J a v a (b c j)

• -encoding name

You can specify a file-encoding name (or codepage name) to control how
the compiler interprets characters beyond the ASCII character set. The
default is to use the default native-encoding converter for the platform.
For more information, see “Specifying a native encoding for the
compiler” on page 16-12.

For example, the following statement:

bcj -encoding EUC_JP tester.java

compiles tester.java. All source files are interpreted as being encoded
in the EUC_JP character set, which is the character set typically used for
Japanese UNIX environments. You can specify any encoding that is
supported by the Java 2 platform. A list of the valid encodings is
available at http://java.sun.com/j2se/1.4/docs/tooldocs/tools.html#intl.

• -exclude classname

Excludes all calls to static void methods in the selected .class file from
a compile. This also excludes the evaluation of the parameters passed to
those methods.

For example, excluding class A removes all calls to static void methods
of A from OTHER classes.

• -g

Generates all debugging information in the class file, including local
variables. By default, only line numbers and source file information is
generated.

• -g:none

Does not generates any debugging information.

• -g:{keyword list}

Generates some types of debugging information. The keyword list is a
comma separated list of keywords, for example: bcj -g:source,lines

Keywords include:

• source: source file debugging information.
• lines: line number debugging information.
• vars: local variable debugging information.

• -nowarn

Compiles without displaying warnings.

• -obfuscate

Obfuscation makes your programs less vulnerable to reverse
engineering. After decompiling your obfuscated code, the generated
source code contains altered symbol names for private symbols.

B-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B o r l a n d C o m p i l e r f o r J a v a (b c j)

• -quiet

Compiles without displaying any messages.

• -source version

Enables support for compiling source code containing assertions.

• When the version is set to 1.4, this command-line option enables the
assert keyword and the JDK 1.4 assertion facility.

• When the version is set to 1.3, the compiler does not support
assertions.

• If the -source option isn’t used, the compiler defaults to the 1.3
behavior.

See also

• “Assertion Facility” at http://java.sun.com/j2se/1.4/docs/guide/lang/
assert.html

• -sourcepath path

The path used to find sources. If no source path is specified, the
classpath is used to find the sources.

Similar to the classpath, the sourcepath must point to the root of the
package directory tree, and not directly to the directory of the sources.

For example, to compile tester.java, which contains the package
statement package test.test3; and is located in jbproject/project1/src/
test/test3, you must set the source path to jbproject/project1/src and
not to jbproject/project1/src/test/test3.

You can then type the following:

bcj -sourcepath jbproject/project1/src
jbproject/project1/src/test/test3/tester.java
-d jbproject/project1/classes

• -verbose

This option gives more information about compiling, such as which
class files are loaded from where in the classpath, including:

• Which source files are being compiled.
• Which classes are being loaded.
• Which classes are generated.

U s i n g t h e c o m m a n d - l i n e t o o l s B-11

B o r l a n d C o m p i l e r f o r J a v a (b c j)

Cross-compilation options

bcj supports cross-compilation, where classes are compiled against a
bootstrap and extension classes of a different Java platform. Use
-bootclasspath and -extdirs when cross-compiling.

• -target version

Restricts the class files to work only on a specific VM version.

bcj supports:

• 1.1 - Generates class files to run on 1.1 and VMs in the Java 2 SDK.
When you select this as the target VM, your class files can be loaded
by any VM.

• 1.2 - Generates class files to run only on VMs in the Java 2 SDK, v 1.2
and later, but won’t run on 1.1 VMs. This is the default.

• 1.3 - Generates class files to run only on VMs in the Java 2 SDK, v 1.3
and later, but won’t run on 1.1 or 1.2 VMs.

• 1.4 - Generates class files to run only on VMs in the Java 2 SDK, v 1.4
and later, but won’t run on 1.1, 1.2, or 1.3 VMs.

• -bootclasspath bootclasspath

Cross-compiles against the specified boot classes. Entries can be
directories, JAR archives, or ZIP archives.

• -extdirs directories

Cross-compiles against the specified extension directories. Each JAR
file in the specified directories is searched for class files.

VM options

• -Joption

Passes options to the java launcher called by bcj. For example,
-J-Xms48m sets the startup memory to 48 megabytes. It is a common
convention for -J to pass options to the underlying VM executing
applications written in Java.

Note that CLASSPATH, -classpath, -bootclasspath, and -extdirs do not
specify the classes used to run bcj. If you do need to do this, use the -J
option to pass through options to the bcj launcher.

B-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B o r l a n d M a k e f o r J a v a (b m j)

Borland Make for Java (bmj)
This is a feature of

JBuilder SE and
Enterprise

Syntax

bmj [options] rootClasses

Description

Borland Make for Java (bmj), which is the default compiler in the IDE and
a command-line compiler, compiles Java source code into Java bytecodes
and checks for dependencies to determine which files actually need to be
recompiled. bmj produces the Java program in the form of .class files
containing bytecodes that are the machine code for the Java virtual
machine. Compiling a source file produces a separate .class file for each
class declaration or interface declaration. When you run the resulting Java
program on a particular platform such as Windows NT, the Java
interpreter for that platform runs the bytecodes contained in the .class
files.

bmj looks for dependency files on the classpath. If you specify a set of
sources, some or all of those sources might not be recompiled. For
example, the class files might be determined to be up to date if they have
been saved but not edited since the last compile. You can force
recompilation using the -rebuild option.

To check a set (or graph) of interdependent classes, it is sufficient to call
bmj on the root class (or multiple root classes, if one is not under the
other). You can specify root classes using class names, package names,
names of sources that declare classes, or a combination.

You might need to set the CLASSPATH environment variable for the
command line, so the required classes are found.

To see the syntax and list of options at the command line, enter the bmj
command with no arguments from the <jbuilder>/bin directory. Many of
these options can also be specified in the JBuilder IDE on the General page
and the Build page of Project Properties (Project|Project Properties).

See also

• “Smart dependencies checking” on page 5-2

• “Compiling from the command line” on page 5-9

• “Setting the CLASSPATH environment variable for command-line
tools” on page B-2

• “Setting the classpath” in the Java Tools documentation

• “Borland Compiler for Java (bcj)” on page B-7

U s i n g t h e c o m m a n d - l i n e t o o l s B-13

B o r l a n d M a k e f o r J a v a (b m j)

Options

Note Directories listed in paths are separated by colons on the UNIX platform
and by semicolons on the Windows platform. The following examples
represent the UNIX platform.

• -classpath path

The path used to find classes and dependency files. Overrides the
default or the CLASSPATH environment variable. You should always
include the outpath at the beginning of the path. The outpath is the root
directory of the class file hierarchy. The classpath is also used to search
for sources if no sourcepath is specified.

For example:

bmj -classpath jbproject/testing/classes/test3:
jbproject/project1/classes tester.java

• -d directory

The root directory of the class (destination) file hierarchy. Also referred
to as the outpath.

For example, the following statement:

bmj -d jbproject/project1/classes tester.java

causes the class files for the classes defined in the tester.java source file
to be saved in the directory jbproject/project1/classes/test/test3,
assuming that tester.java contains the following package statement:
package test.test3;

The updated dependency file, test.test3.dep2, is saved in jbproject/
project1/classes/package cache.

Files are read from the class path and written to the destination
directory. The destination directory must be part of the class path. The
default destination for class files matches the package structure in the
source files and starts from the root directory of the source. The default
destination for dependency files matches the package structure and
starts in the current directory.

• -deprecation

Displays all deprecated classes, methods, properties, events, and
variables used in the API.

If a warning is displayed when compiling, indicating that some
deprecated APIs were used, you can turn this option on to see all
deprecated APIs.

• -encoding name

You can specify a file-encoding name (or codepage name) to control how
the compiler interprets characters beyond the ASCII character set. The

B-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B o r l a n d M a k e f o r J a v a (b m j)

default is to use the default native-encoding converter for the platform.
For more information, see “Specifying a native encoding for the
compiler” on page 16-12.

For example, the following statement:

bmj -encoding EUC_JP tester.java

compiles tester.java and any directly imported .java files that do not
have .class files. All source files are interpreted as being encoded in the
EUC_JP character set, which is the character set typically used for
Japanese UNIX environments. You can specify any encoding that is
supported by the Java 2 platform. A list of the valid encodings is
available at http://java.sun.com/j2se/1.4/docs/tooldocs/tools.html#intl.

• -exclude classname

Excludes all calls to static void methods in the selected .class file from
a compile. This also excludes the evaluation of the parameters passed to
those methods.

For example, excluding class A removes all calls to static void methods
of A from OTHER classes.

• -g

Generates all debugging information in the class file, including local
variables. By default, only line numbers and source file information is
generated.

• -g:none

Doesn’t generate any debugging information.

• -g:{keyword list}

Generates some types of debugging information. The keyword list is a
comma-separated list of keywords, for example: bmj -g:source,lines

Keywords include:

• source: source file debugging information.
• lines: line number debugging information.
• vars: local variable debugging information.

• -nocompile

Checks whether the classes are up-to-date, but doesn’t compile any
classes. Useful for quickly checking whether a class or package is up to
date. Stops at the first file needing recompilation, and reports “Class
<class> needs recompiling because <reason>.”

• -nowarn

Compiles without displaying warnings.

U s i n g t h e c o m m a n d - l i n e t o o l s B-15

B o r l a n d M a k e f o r J a v a (b m j)

• -obfuscate

Obfuscation makes your programs less vulnerable to reverse
engineering. After decompiling your obfuscated code, the generated
source code contains altered symbol names for private symbols.

• -quiet

Compiles without displaying any messages.

• -rebuild

The Rebuild command compiles the specified root classes and their
imported files, regardless of whether they have changed.

See also

• “The Rebuild command” on page 6-4

• -source version

Enables support for compiling source code containing assertions.

• When the version is set to 1.4, this command-line option enables the
assert keyword and the JDK 1.4 assertion facility.

• When the version is set to 1.3, the compiler does not support
assertions.

• If the -source option isn’t used, the compiler defaults to the 1.3
behavior.

See also

• “Assertion Facility” at http://java.sun.com/j2se/1.4/docs/guide/lang/
assert.html

• -sourcepath path

The path used to find sources. If no source path is specified, the
classpath is used to find the sources.

Similar to the classpath, the sourcepath must point to the root of the
package directory tree, and not directly to the directory of the sources.

For example, to make tester.java, which contains the package
statement package test.test3; and is located in jbproject/project1/src/
test/test3, you must set the source path to jbproject/project1/src and
not to jbproject/project1/src/test/test3.

You can then type the following:

bmj -sourcepath jbproject/project1/src
jbproject/project1/src/test/test3/tester.java
-d jbproject/project1/classes

B-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B o r l a n d M a k e f o r J a v a (b m j)

• -sync

Deletes class files on the outpath that you don’t have source files for
before compiling. You have to specify the outpath directory using the
-d option.

This option can be helpful to avoid situations when the compiler might
find a class file in the output directory, which cannot be compiled from
source. (You may have deleted the source file or you have renamed one
of the classes declared in a source file.)

• -verbose

This option gives more information about compiling, such as which
class files are loaded from where in the classpath. The following
information is displayed:

• The classpath, sourcepath, and output directory that are being used.
• Which source files are being compiled.
• Which classes files are loaded.
• Which classes are generated.
• Which dependency files are generated.

Cross-compilation options

bmj supports cross-compilation, where classes are compiled against a
bootstrap and extension classes of a different Java platform. Use
-bootclasspath and -extdirs when cross-compiling.

• -target version

Restricts the class files to work on a specific VM version.

bmj supports:

• 1.1 - Generates class files to run on 1.1 and VMs in the Java 2 SDK.
When you select this as the target VM, your class files can be loaded
by any VM.

• 1.2 - Generates class files to run only on VMs in the Java 2 SDK, v 1.2
and later, but won’t run on 1.1 VMs. This is the default.

• 1.3 - Generates class files to run only on VMs in the Java 2 SDK, v 1.3
and later, but won’t run on 1.1 or 1.2 VMs.

• 1.4 - Generates class files to run only on VMs in the Java 2 SDK, v 1.4
and later, but won’t run on 1.1, 1.2, or 1.3 VMs.

• -bootclasspath bootclasspath

Cross-compile against the specified boot classes. Entries can be
directories, JAR archives, or ZIP archives.

U s i n g t h e c o m m a n d - l i n e t o o l s B-17

B o r l a n d M a k e f o r J a v a (b m j)

• -extdirs directories

Cross-compile against the specified extension directories. Each JAR file
in the specified directories is searched for class files.

Specifiers for root classes

Root classes are specified in the following form:

{[-s] {source.java} | -p {package} | -c {class}}

• -s sourcefilename

Indicates that the specified root classes are those defined in the given
source files. This is the default interpretation.

For example, the following statement:

bmj -sourcepath jbproject/project1/src
-s jbproject/project1/src/tester.java

is the same as

bmj -sourcepath jbproject/project1/src
jbproject/project1/src/tester.java

If you list some packages with the -p option before listing sources, then
you need to specify the -s option. If you list sources before packages
and classes, the -s is assumed and is not necessary.

• -p packagename

The name of packages to compile.

For example, the following statement:

bmj -sourcepath jbproject/project1/src -p test.test3

makes all classes of the test.test3 package and all imported classes.

• -c classname

The names of the classes to make.

For example, the following statement:

bmj -sourcepath jbproject/project1/src
-c test.test3.tester

makes the class tester of package test.test3 and all imported classes.

As another example, the following statement:

bmj -sourcepath jbproject/project1/src tester.java -p package1 package2
-s jbproject/project1/src/*.java

makes the source file tester.java, packages package1 and package2,
and all the java files in the jbproject/project1/src directory.

B-18 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

B o r l a n d M a k e f o r J a v a (b m j)

Note that the first source name (tester.java) comes before the -p
(package) option so does not need to explicitly specify the -s option,
because -s is assumed. If you want to specify another source file name
after the -p option is specified, you have to explicitly specify the -s
option.

VM options

• -Joption

Passes options to the java launcher called by bmj. For example,
-J-Xms48m sets the startup memory to 48 megabytes. It is a common
convention for -J to pass options to the underlying VM executing
applications written in Java.

Note that CLASSPATH, -classpath, -bootclasspath, and -extdirs do not
specify the classes used to run bmj. If you do need to do this, use the -J
option to pass through options to the bmj launcher.

I n d e x I-1

Symbols
@author 14-5
@deprecated 14-5
@docRoot 14-5
@exception 14-5
@link 14-5
@param 14-5
@return 14-5
@see 14-5
@serial 14-5
@serialData 14-5
@serialField 14-5
@since 14-5
@tags

list of 14-5
@throws 14-5
@version 14-5

A
adding a JDK 2-20
adding directory view to project 2-16
adding events

to JavaBeans 10-11, 10-14, 10-15
adding libraries 4-2
adding to projects 2-13

See also projects
Ant 6-7

adding targets to Project menu 6-18
Ant wizard 6-7
build files 6-7
building 6-7
importing Ant projects 6-7
libraries 6-14
options 6-14
setting JDK 6-12
setting properties 6-12
targets 6-7
tutorial 18-1
using bmj command-line make 6-12

Ant build files
adding to project 6-7

Ant wizard 6-7
API documentation

creating 14-1
generating output files 14-16
viewing from project pane 14-20
viewing in Doc tab 14-20, 14-22
viewing in Help Viewer 14-20

API documentation viewing
in UML browser 11-13

applets
deploying 15-1, 15-11
JDK versions 15-8
running 7-1

appletviewer
command-line tool B-1

applications
building 6-1
compiling 5-1
debugging 8-1
deploying 15-1, 15-11
running 7-1
testing 13-1

Archive Builder
archive types 15-17
creating archive files 15-4
creating documentation archive 14-25
creating executable files 15-26
deploying files 15-17
setting runtime configuration options 15-28

archive files
creating executable files 15-26
creating for deployment 15-2
creating for documentation 14-25
deleting 15-33
JAR files 15-4
manifest files 15-3
removing 15-33
renaming 15-33
setting runtime configuration options 15-28
types supported in Archive Builder 15-17
viewing contents 15-6, 15-31
ZIP files 15-4

archive node
building 15-31
deleting 15-33
properties 15-32
removing 15-33
renaming 15-33
resetting properties 15-31
viewing contents 15-31

archiving
documentation 15-17
manifest file 15-3
projects for deployment 15-2
source files 15-17
with Archive Builder 15-4

Index

I-2 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

with jar tool 15-5
with Native Executable Builder 15-29

Assert class 13-6
assert keyword

enabling 2-4, B-10, B-15
assertEquals() 13-6
assertNotNull() 13-6
assertTrue() 13-6
auto source package settings 2-4
automatic source packages

Project Source node 6-21
automatic source packages option

deepest package exposed 6-21

B
backup path 4-12
bcj command-line compiler 5-9, B-7
BeanInfo classes

creating 10-8
generating automatically 10-9
modifying 10-10

BeanInfo data 10-9
modifying 10-9

BeanInfo designer 10-9
BeanInsight 10-21
BeansExpress 10-1

changing BeanInfo classes 10-10
changing properties 10-6
creating JavaBeans 10-2
removing properties 10-7
setting properties 10-4, 10-7

bmj command-line make 5-9, B-12
using with Ant 6-12

Borland
contacting 1-6
developer support 1-6
e-mail 1-7
newsgroups 1-7
online resources 1-6
reporting bugs 1-7
technical support 1-6
World Wide Web 1-6

Borland Compiler for Java (bcj) B-7
Borland Make for Java (bmj) B-12
bound properties

setting for JavaBeans 10-7
breakpoints 8-40

actions for 8-51
class 8-45
conditional 8-52, 8-53
cross-process 8-47, 9-10
disabling 8-54
enabling 8-54

exception 8-43
field 8-47
for debugging tests 13-17
line 8-41
locating 8-55
method 8-46
overriding Tracing Disabled 8-40
pass counts 8-53
properties 8-50
removing 8-54
running to 8-35
setting 8-41

browse path 4-11
build command-line option 5-10
build files

adding to project 6-7
build menus 5-3

adding targets 6-18, 6-19
build phases

Clean 6-2
Compile 6-2
Deploy 6-2
Make 6-2
Package 6-2
Post-compile 6-2
Pre-compile 6-2
Rebuild 6-2

build target
runtime configuration 7-10

build targets 5-4
Ant 6-7

build tasks 6-16
building external tasks 6-17
External Build Task wizard 6-16
setting Ant properties 6-12
setting properties 6-17

building
See also compiling
Ant 6-7
Ant messages 6-11
automatic source packages 6-21
build messages 6-17
build tasks 6-2
Clean command 6-5
copying resources to output path 6-25
creating external build tasks 6-16
excluding packages 6-23
external build tasks 6-16
from command line B-4
Java programs 6-1
Make command 6-3
overview 6-1
phases 6-2
project groups 6-5

I n d e x I-3

Rebuild command 6-4
Run command 5-4
Run command and Ant 6-12
SQLJ files 6-15
targets 6-2
terms defined 6-2

C
Cactus 13-2, 13-11

configuring your project 13-11
running tests 13-13
testing an EJB 13-7

Cactus Setup wizard 13-11
calls to methods

viewing 8-36
changing

BeanInfo classes 10-10
data values in debugger 8-57
method parameters 12-22

class breakpoints 8-45
class files 4-10

directory locations for 4-8
how JBuilder finds 4-13

class path 4-10
classes

API documentation for 14-2
finding definition of 12-7
finding references to 12-8
redistribution in deployment 15-15
UML diagrams 11-4, 11-7
updating after compiling 8-64
updating after compiling (options) 8-65

Classes with tracing disabled view 8-12
-classic option for debugging 8-7
classpath

setting paths B-2
CLASSPATH environment variable

setting for command line B-2
Clean command 6-5
Clean phase 6-2
code

modifying while debugging 8-64
obfuscated code in UML diagrams 11-3
viewing from a UML diagram 11-13
visualizing

See also UML
code block

surrounding with try/catch 12-26
code symbols

discovery before refactoring 12-7
refactoring 12-1

codepages 16-14
See also native encodings

command line
building projects 5-10
compiling 5-9
JBuilder arguments 5-10
JBuilder command-line interface B-4
running deployed programs 7-13
running JAR files 7-13
switching to IDE when compiling 5-11
tools B-1

See also command-line tools
command-line compilers

bcj 5-9, B-7
bmj 5-9, B-12

command-line interface
JBuilder B-4

command-line options
for Javadoc 14-13
in Javadoc wizard 14-13

command-line tools B-1
appletviewer B-1

native2ascii B-1
bcj B-7
bmj B-12
jar 15-5, B-1
java B-1
javac B-1
javadoc B-1
JBuilder B-4
setting CLASSPATH B-2
setting paths for B-2

comments for Javadoc 14-2
comparison fixture 13-10

tutorial 22-1
wizard 13-10

Compile phase 6-2
compilers

bcj 5-9, B-7
bmj 5-9, B-12
Borland Make 5-8
errors 5-4
javac 5-8
project javac 5-8
setting options 5-6
specifying in IDE 5-8

compiling
See also building
before refactoring 12-6
building with Ant files 18-1
Clean command 6-5
copying resources to output path 6-25
errors 5-4
errors when opening projects 5-5
excluding packages 6-23
from command line 5-9

I-4 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

how JBuilder finds files 4-13
Java programs 5-1
Make command 6-3
overview 5-1
programs with debug info 8-4
project groups 6-5
projects within a project group 5-9
project-wide settings 5-6
Rebuild command 6-4
Run command 5-4
setting options 5-6
setting output path 5-8
setting target VM 5-6
smart dependencies checking 5-2
source files 5-3
specifying a different compiler 5-8
status bar 7-2
tutorial 17-1
with references from project libraries 12-6

compiling in IDE
with Borland Make for Java 5-8
with javac 5-8
with project javac 5-8

component palette
installing JavaBeans 10-22

components
cross-platform 10-1
reusable 10-1

conditional breakpoints 8-52
setting 8-53

configuration
runtime types 7-12

configuration files A-1
configurations

displaying with command-line argument B-4
configuring

JDKs in JBuilder 2-22
libraries 4-2

Console output, input, and errors view 8-11
constrained properties

setting for JavaBeans 10-7
creating

API documentation 14-1
BeanInfo classes 10-8
custom doclet 14-27
JavaBeans 10-1, 10-2
property editors 10-17
runtime configurations 7-6, 7-8
test cases 13-5

creating project files 2-11
creating projects from existing files 2-7
cross-platform components 10-1
cross-process breakpoints 8-47, 9-10

cursor location
running to 8-36

custom fixture 13-11
wizard 13-11

customizing
JavaBeans 10-8

D
Data and code breakpoints view 8-13
data values

changing in debugger 8-57
examining while debugging 8-55

Data watches view 8-18
deadlocks 8-32
debug information 8-4
debugger 8-1

and unit tests 13-17
customizing display 8-67
customizing settings 8-68
ending session 8-8
ExpressionInsight 8-25
pausing program execution 8-8
running under control of 8-7
setting update intervals 8-69
shortcut keys 8-25
status bar 8-23
tool tips 8-26
toolbar 8-23
user interface 8-8
views 8-10

debugger views
Classes with tracing disabled view 8-12
Console output, input, and errors view 8-11
Data and code breakpoints view 8-13
Data watches view 8-18
Loaded classes and static data view 8-20
Synchronization monitors view 8-22
Threads, call stacks, and data view 8-15

debugging 8-1
attaching to running program 9-6
breakpoints and tracing disabled settings 8-40
changing data values 8-57
choosing stepping thread 8-31
class file 8-6
compiling with debug info 8-4
controlling program execution 8-27
controlling tracing into classes 8-37
cross-process breakpoints 9-10
deleting watches 8-62
detecting deadlocks 8-32
displaying current thread 8-31
displaying static and local variables 8-56
displaying top stack frame 8-31

I n d e x I-5

distributed applications 9-1
editing watches 8-61
examining program data values 8-55
execution point 8-28
from command line 8-1
JSP 8-27
keeping thread suspended 8-31
launching program remotely 9-2
LegacyJ code 8-27
local code running in separate process 9-9
logic errors 8-2
managing threads 8-30
modifying code 8-64
modifying values 8-63
moving through code 8-32
non-Java source 8-27
overview 8-3
project 8-6
remotely 9-1
resetting program 8-28
running program on remote computer 9-6
running to a breakpoint 8-35
running to the cursor location 8-36
running to the end of a method 8-36
runtime configuration 8-3
runtime exceptions 8-2
sessions 8-9
setting breakpoints 8-40, 8-41
setting execution point 8-29
smart step 8-34
SQLJ code 8-27
starting session 8-6
starting session with -classic 8-7
stepping into method calls 8-33
stepping out of a method 8-34
suspending and running debugger 8-27
tracing into classes with no source

available 8-39
tutorial 17-1
unit test 8-6
unit tests 13-3, 13-17
using -classic option 2-20
viewing method calls 8-36
watching expressions 8-59
web application 8-6

deleting 2-15
dependencies

UML diagrams 11-7
dependencies checking 5-2, 5-6
Deploy phase 6-2
deploying

applets 15-11
applications 15-1, 15-11
applications as archives 15-2

distributed applications 15-15
JavaBeans 15-13
tips 15-14
to Internet 15-14

deployment issues 15-7
applets relying on JDK 1.1.x or Java 2 15-8
applets vs. applications 15-9
download time 15-10
libraries 15-9
libraries on CLASSPATH 15-8
redistribution of classes 15-15

design
patterns (JavaBean) 10-1

designing
JavaBean user interfaces 10-4

diagrams, UML 11-10
See also UML

directory view
adding 2-16

directory-package correspondence 5-6
display of static and local variables 8-56
displaying

project files 4-13
distributed applications

debugging 9-1
deploying 15-15

doc path 4-11
doclet

creating custom 14-27
JDK 1.1 14-9
Standard 14-9

documentation
viewing Javadoc 14-22

documentation archive
creating 14-25

documentation conventions 1-4
platform conventions 1-5

documentation node
changing properties for 14-23, 14-24
expanding 14-20
generating 14-8
Javadoc wizard 14-8
properties for 14-8

duplicate class definitions 5-6

E
editing the JDK 2-19
editor

and test runners 13-14
optimizing imports 12-14

EJB
testing 13-11
testing with Cactus 13-12

I-6 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

EJB Test Client wizard 13-7, 13-12
encoding

setting 2-4
encodings

adding and overriding 16-13
native 16-12
native defined 16-2
setting options 16-12

error messages 5-4
debugger 8-2

errors
error messages 5-4
logic 8-2
runtime 8-2
syntax errors 5-4
types of 8-2

evaluating and modifying expressions 8-62
event sets

creating custom 10-15
events

adding to JavaBeans 10-11, 10-14, 10-15
exception breakpoints 8-43
exceptions

and unit tests 13-6
executable files

creating 15-26
running 15-26

executables
configuration files A-1
launcher A-1

execution point
overview 8-28
setting 8-29

Expose Superclass BeanInfo option 10-9
ExpressionInsight 8-25
expressions

evaluating 8-62
evaluating and modifying 8-62
watching 8-59

External Build Task wizard 6-16
external build tasks 6-16
extract method 12-4
extracting

method 12-24

F
field API documentation 14-2
field breakpoints 8-47
fields

finding definition of 12-7
finding references to 12-8
UML diagrams 11-7

files
generated for Javadoc 14-16
location 4-12

See also project files
opening outside of project 2-15
renaming 2-15
running within project 7-1
stub source 8-39
switching 2-9
viewing in JBuilder 2-9
viewing project files 4-13

Files Modified dialog box 8-65
filtering

excluding packages from build 6-23
filtering packages 6-23
Find Definition command 12-7
Find References 12-8

in the UML browser 11-21
finding definition of

class 12-7
field 12-7
method 12-7
variable 12-7

finding references to
class 12-8
field 12-8
method 12-8
variable 12-8

fonts
displaying international fonts 16-10
JBuilder documentation conventions 1-4

G
generating

JavaBeans 10-2
Javadoc 14-1
Javadoc output files 14-16
Javadoc tags 14-6

grouped projects
running 7-5

I
icons

JBTestRunner 13-14
specifying JavaBean 10-9
UML visibility icons 11-9

IDE Options
UML 11-19

image files
saving UML diagrams 11-20

import statements 4-8
optimizing 12-14

I n d e x I-7

imports
optimizing 12-2

installing
JavaBeans on component palette 10-22

interface API documentation 14-2
interfaces

UML diagrams 11-7
international versions

JBuilder 16-15
internationalization 16-2, 16-16

compiler features 16-12
dbSwing 16-8
debugger features 16-12
defined 16-1
encoding options 16-12
JBuilder features 16-2
non-native peers 16-10
programs 16-1
terms and definitions 16-1
UI designer features 16-10

Internet
deploying applications to 15-14

introduce variable 12-4

J
jar command-line tool B-1
JAR files 15-4

adding to project 4-1
command-line access 15-5
creating with Archive Builder 15-4
creating with jar tool 15-5
extracting 15-6
manifest 15-3
running from command line 7-13, 15-24
updating from command line 15-7
viewing contents 15-6

Java
and UML 11-2

Java archive files 15-4
See also JAR files

Java Archive Tool 15-5
Java classes

collections of 10-1
java command-line tool B-1
Java files

directory locations for 4-7
Java initialization string 10-18
JavaBean wizard 10-2
JavaBeans 10-2

adding events 10-11, 10-14, 10-15
advantages 10-1
changing properties for 10-6
creating 10-1, 10-2

customizing 10-8
defined 10-1
deploying 15-13
designing user interface 10-4
displaying property settings 10-9
installing 10-22
removing properties for 10-7
serializing 10-21
setting properties for 10-4, 10-7
validity 10-21

javac command-line tool B-1
javadoc command-line tool B-1
Javadoc comments

adding for classes 14-3
adding for fields 14-3
adding for interfaces 14-3
adding for methods 14-3
automatically generating tags for 14-6
conflicts 14-8
examples of 14-2
todo tags 14-7
using tags 14-5
where to place 14-3

Javadoc documentation 14-1
adding comments 14-2
build options 14-10
command-line options 14-13
formatting output 14-9
generated files 14-16
generating output files 14-16
generating package files 14-18
JDK 1.1 output 14-9
maintaining 14-22
name of node 14-10
output directory 14-10
overview comment files 14-18
package detail files 14-18
scope of documentation 14-12
Standard output 14-9
viewing for entire project 14-20
viewing for individual file 14-20, 14-22
viewing from project pane 14-20
viewing from UML diagram 14-20
viewing in Doc tab 14-20, 14-22
viewing in Help Viewer 14-20

Javadoc documentation viewing
from UML diagram 11-13

Javadoc fields
setting in Project wizard 2-4

Javadoc tags
@author 14-5
@deprecated 14-5
@docRoot 14-5
@exception 14-5

I-8 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

@link 14-5
@param 14-5
@return 14-5
@see 14-5
@serial 14-5
@serialData 14-5
@serialField 14-5
@since 14-5
@throws 14-5
@version 14-5
automatically generating 14-6
entering in source files 14-5
list of 14-5

Javadoc wizard 14-1
build options 14-10
changing properties for node 14-23
command-line options 14-13
formatting output 14-9
JDK 1.1 output 14-9
name of documentation node 14-10
output directory 14-10
scope of documentation 14-12
Standard output 14-9

JBTestRunner 13-14
and editor 13-14
icons 13-14
Test Failures 13-14
Test Hierarchy 13-14
Test Output 13-14
tutorial 21-1

JBuilder
international versions 16-15

JDBC fixture 13-8
tutorial 22-1
wizard 13-8

JDK
setting for Ant projects 6-12

JDK 1.1 output for Javadoc 14-9
JDKs

configuring in JBuilder 2-22
debugging with -classic 2-20
editing 2-19
setting in the Project wizard 2-4
switching and setting 2-20

JNDI fixture 13-9
wizard 13-9

JSP
debugging 8-27

JUnit 13-1
Assert class 13-6
assertEquals() 13-6
assertNotNull() 13-6
assertTrue() 13-6
AwtUI 13-1

integration into JBuilder 13-1
setUp() 13-4
SwingUI 13-1, 13-16
tearDown() 13-4
test runners 13-1
TestCase class 13-1, 13-3
testing an EJB 13-7
TestSuite class 13-1, 13-3
TextUI 13-1, 13-16

JUnit Test Collector 13-3

L
launcher

configuration files A-1
executables A-1

LegacyJ code
debugging 8-27

libraries
adding and configuring 4-2
adding projects as required 3-4, 4-5
adding to project 2-4
Ant 6-14
defined 4-1
deployment 15-9
display lists of 4-6
editing 4-5
including references in UML diagrams 11-18,

11-19
redistributable 15-9
setting paths 2-22

line breakpoints 8-41
Loaded classes and static data view 8-20
local variable display 8-56
locale

defined 16-2
locale-sensitive features 16-9
Localizable Property Setting dialog box 16-8
localization 16-1

defined 16-2
locating

a method call 8-37
logic errors 8-2

M
main class

setting 7-3
maintaining Javadoc 14-22
make

command-line bmj B-12
Make command 6-3
Make phase 6-2

I n d e x I-9

manifest files 15-3
editing 15-24
viewing in JBuilder 15-31

menus
configuring Project Group menu 6-19
configuring Project menu 6-18

method API documentation 14-2
method breakpoints 8-46
method calls

evaluating 8-62
locating 8-37
viewing 8-36

method parameters
changing 12-4

methods
finding definition of 12-7
finding references to 12-8
running to end of 8-36
UML diagrams 11-7

modifying
code while debugging 8-64
values of variables 8-63

move refactoring
classes 12-3, 12-18
compiling before 12-6
overview 12-1
previewing 12-10
saving 12-26
symbol discovery 12-7
undoing 12-26

moving
classes 12-3, 12-18
saving 12-26
undoing 12-26

multilingual sample application 16-3
multiple projects 2-23

saving 2-24
switching between 2-23

N
naming conventions

packages 4-9
native encodings 16-12, 16-14

defined 16-2
supported 16-13

Native Executable Builder 15-29
native executable node

setting properties 15-30
native2ascii command-line tool B-1
navigating

UML diagrams 11-15
New Directory View command 2-16
New Property Editor dialog box 10-17

newsgroups
Borland 1-7
public 1-7

nodes
Project Source 6-21

non-Java source
debugging 8-27

O
obfuscated code

in UML diagrams 11-3
object watches 8-61
opening files

outside of project 2-15
opening project files 2-10
OpenTools

enabling verbose debugging mode with
command-line argument B-4

running 7-5
Optimize Imports command 12-14
optimizing imports 12-2
organizing projects 2-13

See also projects
out path 4-10
output path

setting 5-8

P
package discovery 6-21
package file

Javadoc documentation 14-18
Package Filters folder 6-23
Package phase 6-2
package-directory correspondence 5-6
packages 4-6

automatic source packages 6-21
class reference in 4-8
enable source package discovery 6-21
excluding from build process 6-23
filtering 6-23
naming conventions 4-9
source package discovery 6-21
UML diagrams 11-4, 11-7

PackageTestSuite class 13-3
Palette Properties dialog box 10-22
pass count breakpoints 8-53
paths 4-1

See also setting paths
class file locations 4-8
compiling, running, debugging 4-13
Java file locations 4-7
setting B-2

I-10 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

setting output path 5-8
setting with classpath option B-2

pausing program execution 8-8
Post-compile phase 6-2
Pre-compile phase 6-2
program data values 8-55
program execution

controlling 8-27
programs

building 6-1
compiling 5-1
debugging 8-1
deploying 15-1
running 8-27
suspending 8-27
testing 13-1

project
configuring for Cactus 13-11
setting general parameters 2-4

project files 2-1
paths 4-12

See also setting paths
saving 2-10
setting paths 4-9
viewing 4-13

Project For Existing Code wizard 2-7
project group file 3-1
Project Group menu

adding targets 6-19
Project Group wizard 3-1
project groups 3-1

adding projects 3-1, 3-3
adding targets to Project menu 6-19
advantages 3-1
build order of projects 3-1
building 6-5
compiling 6-5
configuring Project Group menu 6-19
creating 3-1
navigating in 3-4
removing projects 3-3
running 7-5

Project menu
adding targets 6-18
configuring 6-18
configuring for project groups 6-19
Make command 6-18
Rebuild command 6-18

project paths
setting 2-4

project properties
setting for refactoring 12-6
setting for references discovery 12-6
setting for UML 11-17

setting output path 5-8
source directory for tests 13-5

Project Source node 6-21, 6-23
filtering packages 6-23

project template
setting 2-2

Project wizard
creating new projects 2-2
Step 1-setting root, type, and template 2-2
Step 2-setting paths, libraries,JDK 2-4
Step 3-general project settings 2-4

projects 2-1
adding as required libraries 3-4, 4-5
adding directory new 2-16
adding files or packages 2-13
adding files, packages 2-14
adding folders 2-13
adding to project groups 3-1
adding ZIP or JAR files 4-1
Ant 6-7
building 6-1
building Ant with Run command 6-12
building from command line 5-10, B-4
building with Run command 5-4
closing 2-10
compiling 5-1
configuring Project menu 6-18
creating and adding to 2-11
creating new 2-2
creating with Project For Existing Code

wizard 2-7
creating with Project wizard See Project wizard
opening 2-10
removing from 2-14
renaming 2-15
running 7-1, 7-3
saving 2-10
saving multiple 2-24
setting main class 7-3
setting properties 2-17
switching between 2-23
using multiple projects 2-23
viewing files 2-9

projects groups
project dependencies 3-4

properties
Ant 6-12
archive node 15-31
changing 10-17
customizing 10-9
external build task 6-17
hiding 10-9
JavaBean components 10-4, 10-7

I n d e x I-11

Native Executable Builder 15-30
UML diagrams 11-7

property editors 10-9
creating 10-17
custom component 10-20
Java initialization string 10-18
String List 10-17
String Tag List 10-18

PropertyChangeSupport class 10-7

R
readObject() 10-21
Rebuild command 6-4
Rebuild phase 6-2
redistribution of classes 15-15
refactoring

change method parameters 12-4
changing method parameters 12-22
extract method 12-4, 12-24
from the UML browser 11-21
introduce variable 12-4, 12-25
move 12-1

See also move refactoring
optimize imports 12-2
rename 12-1

See also rename refactoring
surround block with try/catch 12-26
surround with try/catch 12-4

reference types
ancestors 12-8
declarations 12-8
descendents 12-8
descendents member references 12-8
descendents type references 12-8
direct usages 12-8
indirect usages 12-8
member references 12-8
reads 12-8
type references 12-8
writes 12-8

references
from libraries 2-4
setting up for discovery of 12-6

referencing classes 4-8
regression testing 13-1

See also unit testing
remote debugging 9-1
remote debugging tutorial 19-1
Remove Watch command 8-62
rename refactoring

classes 12-2, 12-17
compiling before 12-6
fields 12-2, 12-21

local variables 12-2, 12-20
methods 12-2, 12-19
overview 12-1
packages 12-2, 12-17
previewing 12-10
properties 12-2, 12-22
saving 12-26
symbol discovery 12-7
undoing 12-26

renaming
classes 12-2, 12-17
fields 12-2, 12-21
local variables 12-2, 12-20
methods 12-2, 12-19
packages 12-2, 12-17
properties 12-2, 12-22
saving 12-26
undoing 12-26

required libraries
adding projects 3-4, 4-5

Resource Strings wizard 16-5
resources

automatic source packages 6-21
copying to output path 6-25

resourcing
defined 16-2
strings 16-5

reusable components 10-1
Run command 7-3

building 5-4
building Ant 6-12

Run To Cursor command 8-36
Run To End Of Method command 8-36
runnable class

setting for project 7-3
specifying in manifest file 15-24

runner types 7-12
running

applets 7-1
applications 7-1
applications from command line 7-13
Cactus tests 13-13
grouped projects 7-5
individual files 7-1
OpenTools 7-5
projects 7-3
tutorial 17-1
under debugger control 8-7
unit tests 13-3, 13-14
web files 7-2

runtime
errors 8-2
exceptions 8-2

I-12 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

runtime configuration options
setting in archive file 15-28

runtime configuration types 7-12
runtime configurations

build target 7-10
creating 7-8
debugging 8-3
for unit testing 13-16
setting 7-6
Test 13-3

S
samples

multilingual application 16-3
saving multiple projects 2-24
separate process debugging 9-9
serialization

adding support for 10-21
server-side testing 13-2, 13-11
Set Execution Point 8-29
setting JDKs 2-20
setting paths 4-9

backup 4-12
browse path 4-11
class path 4-10
CLASSPATH B-2
classpath option B-2
command-line tools B-2
doc 4-11
JDKs 2-19

See also JDKs
output 4-10
project paths 2-4
required libraries 2-22
source files 4-10

setting properties
in JavaBeans 10-4, 10-7
projects 2-17

setting runtime configurations 7-6
setUp() 13-4
smart dependencies checking 5-2
Smart Source 8-27
Smart Step 8-33, 8-34

options 8-34
Smart Swap 8-64

and the target VM 8-64
source directory

test 13-5
source discovery 6-21
source files

path 4-10

source paths
class files 4-8
Java files 4-7

splash screen
disabling with command-line argument B-4

SQLJ
building files 6-15

SQLJ code
debugging 8-27

stack trace filter
unit testing 13-16

Standard output for Javadoc 14-9
static variable display 8-56
status bars

build progress 7-2
debugger 8-23

Step Into 8-33
step into 8-6
Step Out 8-34
Step Over 8-33
step over 8-6
stepping

into method calls 8-33
out of a method 8-34
over method calls 8-33
smart 8-33, 8-34

structure pane
Errors folder 5-4
Javadoc conflicts 14-8
ToDo folder 14-7
UML 11-16

stubs
source files 8-39

superclasses 10-9
Support Serialization option 10-21
surround with try/catch 12-4
SwingUI 13-16
switching files 2-9
switching the JDK 2-20
Synchronization monitors view 8-22
syntax errors 5-4

T
tags

for Javadoc 14-2
todo for Javadoc 14-7

target
runtime configuration 7-10

target VM options 5-6
targets

Ant 6-7
build 5-4

I n d e x I-13

setting Ant properties 6-12
setting build task properties 6-17

tearDown() 13-4
templates

project 2-2
Test Case wizard 13-5

tutorial 21-1
test cases

See also unit testing
creating 13-5
order of execution 13-4
running from a main() 13-16
setUp() 13-4
tearDown() 13-4
todo tags 13-6

test fixtures
comparison fixture 13-10
custom 13-11
example 13-8
JDBC fixture 13-8
JNDI fixture 13-9
predefined 13-8
tutorial 22-1

Test Hierarchy page 13-14
test methods

requirements 13-6
test runners 13-13

and editor 13-14
available in JBuilder 13-1
JBTestRunner 13-14
JUnit AwtUI 13-1
JUnit SwingUI 13-16
JUnit TextUI 13-16
setting 13-16

test source directory 13-5
Test Suite wizard 13-7

tutorial 21-1
test suites 13-4

See also unit testing
TestCase class 13-1, 13-3

extending 13-4
setUp() 13-4
tearDown() 13-4

testing
See also unit testing
an EJB 13-11
server-side code 13-11

TestRecorder class 13-10
TestSuite class 13-1, 13-3
TextUI 13-16
threads

choosing for stepping 8-31
detecting deadlocks 8-32
displaying current 8-31

displaying top stack frame 8-31
keeping suspended 8-31
managing 8-30
split pane 8-30

Threads, call stacks and data view
split pane 8-30

Threads, call stacks, and data view 8-15
todo tags 14-7

in test cases 13-6
tool tips

debugger 8-26
UML diagrams 11-13

toolbar
debugger 8-23

tools
appletviewer B-1
command-line B-1
jar 15-5, B-1
java B-1
javac B-1
javadoc B-1
JBuilder command-line interface B-4
native2ascii B-1

Trace Into settings
for classes with no source available 8-39

tracing into classes
disabling 8-37
enabling 8-37

try/catch
surrounding code block with 12-26

tutorials
building with Ant files 18-1
compiling, running, and debugging 17-1
creating and running unit tests 21-1
remote debugging 19-1
test fixtures 22-1
UML 20-1

U
UML 11-1

and Java 11-2
defined 11-1
overview 11-1
tutorial 20-1

UML browser 11-10
context menu 11-14
defined 11-10
navigating diagrams 11-15
refactoring code 11-21
tool tips 11-13
tutorial 20-1
viewing code 11-13
viewing Javadoc 11-13

I-14 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

UML diagrams 11-3
class diagram defined 11-4
class diagrams 11-12
customizing 11-17
defined 11-7
filtering 11-18
Find References 11-21
including library references 11-18
including references from generated

source 11-19
obfuscated code 11-3
package diagram defined 11-4
package diagrams 11-12
printing 11-20
refactoring code 11-21
saving as images 11-20
structure pane folders 11-7
tool tips 11-13
viewing classes and packages 11-10
viewing inner classes 11-12
visibility icons 11-9

UML images 11-20
printing diagrams 11-20
saving diagrams 11-20

UML options
customizing IDE 11-19
filtering packages and classes 11-18
including library references 11-18
including references from generated

source 11-19
project properties 11-17

UML terms
corresponding Java terms 11-2
defined 11-2

Unicode 16-12
16-bit format 16-14
7-bit ASCII 16-15
defined 16-2
displaying 16-10
entering 16-10

unit testing 13-1
an EJB 13-7, 13-11, 13-12
Cactus 13-2, 13-11
comparison fixture 13-10
creating tests 13-4
custom fixture 13-11
Debug Test menu option 13-3
debugging tests 13-17
defined 13-1
goals 13-4
JBTestRunner 13-14
JDBC fixture 13-8
JNDI fixture 13-9
JUnit 13-1

JUnit SwingUI 13-16
JUnit Test Collector 13-3
JUnit TextUI 13-16
list of features 13-2
Run Test menu option 13-3
running tests 13-13
runtime configuration 13-3
runtime configurations 13-16
server-side code 13-2, 13-11
source directory 13-5
Test Case wizard 13-5
test discovery 13-3
test fixtures 13-8
test methods 13-6
Test Suite wizard 13-7
TestCase class 13-1, 13-3
TestSuite class 13-1, 13-3
tutorial 21-1, 22-1

unit testing stack trace filter 13-16
Update Classes After Compiling 8-65
updating

classes after compiling 8-64
classes after compiling (options) 8-65

Usenet newsgroups 1-7
user interfaces

designing JavaBean 10-4

V
valid JavaBeans

checking for 10-21
values

examining while debugging 8-55
variable

introducing 12-25
variable watches 8-59
variables

finding definition of 12-7
finding references to 12-8
modifying values 8-63

viewing files 2-9
viewing project files 4-13
visibility icons

UML diagrams 11-9
visualizing code 11-1

See also UML
VM

debugging with -classic 2-20
setting target VM 5-6

W
watches 8-59

deleting 8-62
editing 8-61

I n d e x I-15

object watches 8-61
variable watches 8-59

watching expressions 8-59
web files

running 7-2
wizards

Ant 6-7
Archive Builder 15-17
Comparison Fixture 13-10
Custom Fixture 13-11
External Build Task 6-16
Javadoc 14-8
JDBC Fixture 13-8
JNDI Fixture 13-9

Native Executable Builder 15-29
Resource Strings 16-5
Test Case 13-5
Test Suite 13-7

working directory 4-12
writeObject() 10-21

Z
ZIP files 15-2

adding to project 4-1
creating with Archive Builder 15-17
viewing 15-6

I-16 B u i l d i n g A p p l i c a t i o n s w i t h J B u i l d e r

	Building Applications with�JBuilder®
	Contents
	Tables
	Figures
	Tutorials
	Ch 1: Introduction
	Documentation conventions
	Developer support and resources
	Contacting Borland Technical Support
	Online resources
	World Wide Web
	Borland newsgroups
	Usenet newsgroups
	Reporting bugs

	Ch 2: Creating and managing projects
	Creating a new project
	Creating a new project with the Project wizard
	Selecting project name and template
	Setting project paths
	Setting general project settings

	Creating a project from existing files
	Selecting the source directory and name for your new JBuilder project

	Displaying files
	Switching between files

	Saving projects
	Opening an existing project
	Creating a new Java source file
	Managing projects
	Adding to a project
	Adding folders
	Adding files and packages

	Removing material from a project
	Deleting material
	Opening a file outside of a project
	Renaming projects and files
	Adding a new directory view

	Setting project properties
	Setting the JDK
	Editing the JDK
	Debugging with -classic
	Setting the JDK in SE and Enterprise

	Configuring JDKs
	Setting paths for required libraries

	Working with multiple projects
	Switching between projects
	Saving multiple projects

	More information about projects

	Ch 3: Working with project groups
	Creating project groups
	Adding and removing projects from project groups
	Navigating project groups
	Adding projects as required libraries

	Ch 4: Managing paths
	Working with libraries
	Adding and configuring libraries
	Editing libraries
	Adding projects as required libraries
	Display of library lists

	Packages
	.java file location = source path + package path
	.class file location = output path + package path
	Using packages in JBuilder
	Package naming guidelines

	How JBuilder constructs paths
	Source path
	Output path
	Class path
	Browse path
	Doc path
	Backup path
	Working directory

	Where are my files?
	How JBuilder finds files when you drill down
	How JBuilder finds files when you compile
	How JBuilder finds class files when you run or debug

	Ch 5: Compiling Java programs
	Smart dependencies checking
	Compiling a program
	JBuilder build menus
	Building projects with the Run command

	Syntax errors and error messages
	Compile problems when opening projects
	Checking for package/directory correspondence

	Setting compiler options
	Specifying a compiler
	Setting additional compiler and build options

	Setting the output path
	Compiling projects within a project group
	Compiling from the command line
	bmj (Borland Make for Java)
	bcj (Borland Compiler for Java)
	Building a project from the command line
	Switching between the command line and IDE

	Ch 6: Building Java programs
	The JBuilder build system
	Build system terms
	Build phases
	The Make command
	The Rebuild command
	The Clean command

	Building project groups
	Specifying the build order for a project group
	Building a project group
	Adding project group build targets to the Project menu

	Building with external Ant files
	Adding Ant build files to projects
	Adding Ant files with the Ant wizard
	Adding Ant files manually

	Creating and editing Ant build files
	Importing existing Ant projects
	Building Ant projects
	Specifying the JDK
	Building Ant projects with the Run command

	Setting Ant properties
	Ant options

	Adding custom Ant libraries

	Building SQLJ files
	Creating external build tasks
	External Build Task wizard
	Building external tasks
	Setting external build task properties

	Configuring the Project menu
	Configuring the Project menu for project groups

	Automatic source packages
	Filtering packages
	Excluding packages
	Including packages

	Selective resource copying
	Individual resource properties
	File-specific options
	Project-wide options
	Adding unrecognized file types as generic resource files

	Project Properties Resource page

	Ch 7: Running Java programs
	Running program files
	Running web files
	Running projects
	Using the Run command
	Running grouped projects
	Running OpenTools

	Setting runtime configurations
	Creating a runtime configuration
	Editing a runtime configuration
	Build Targets
	Runtime configuration types

	Running programs from the command line
	Running a deployed program from the command line

	Ch 8: Debugging Java programs
	Types of errors
	Runtime errors
	Logic errors

	Overview of the debugging process
	Creating a runtime configuration
	Compiling the project with symbolic debug information
	Starting the debugger
	Starting the debugger with the -classic option

	Running under the debugger’s control
	Pausing program execution
	Ending a debugging session

	The debugger user interface
	Debugging sessions
	Debugger views
	Console output, input, and errors view
	Classes with tracing disabled view
	Data and code breakpoints view
	Threads, call stacks, and data view
	Data watches view
	Loaded classes and static data view
	Synchronization monitors view

	Debugger toolbar
	Debugger shortcut keys
	ExpressionInsight
	Tool tips

	Debugging non-Java source
	Controlling program execution
	Running and suspending your program
	Resetting the program
	The execution point
	Setting the execution point

	Managing threads
	Using the split pane
	Displaying only the current thread
	Displaying the top stack frame
	Choosing the thread to step into
	Keeping a thread suspended
	Detecting deadlock states

	Moving through code
	Stepping into a method call
	Stepping over a method call
	Stepping out of a method
	Using Smart Step

	Running to a breakpoint
	Running to the end of a method
	Running to the cursor location
	Viewing method calls
	Locating a method call
	Controlling which classes to trace into
	Tracing into classes with no source available
	Breakpoints and tracing disabled settings

	Using breakpoints
	Setting breakpoints
	Setting a line breakpoint
	Setting an exception breakpoint
	Setting a class breakpoint
	Setting a method breakpoint
	Setting a field breakpoint
	Setting a cross-process breakpoint

	Setting breakpoint properties
	Setting breakpoint actions
	Stopping program execution
	Logging a message

	Creating conditional breakpoints
	Setting the breakpoint condition
	Using pass count breakpoints

	Disabling and enabling breakpoints
	Deleting breakpoints
	Locating line breakpoints

	Examining program data values
	How variables are displayed in the debugger
	Changing data values
	Watching expressions
	Variable watches
	Object watches
	Editing a watch
	Deleting a watch

	Evaluating and modifying expressions
	Evaluating expressions
	Evaluating method calls
	Modifying the values of variables

	Modifying code while debugging
	Updating all class files
	Updating individual class files
	Resetting the execution point
	Options for modifying code

	Customizing the debugger
	Customizing the debugger display
	Setting debug configuration options
	Setting update intervals

	Ch 9: Remote debugging
	Launching and debugging a program on a remote computer
	Debugging a program already running on the remote computer
	Debugging local code running in a separate process

	Debugging with cross-process breakpoints

	Ch 10: Creating JavaBeans with BeansExpress
	What is a JavaBean?
	Why build JavaBeans?
	Generating a bean class
	Designing the user interface of your bean
	Adding properties to your bean
	Modifying a property
	Removing a property
	Adding bound and constrained properties

	Creating a BeanInfo class
	Specifying BeanInfo data for a property
	Working with the BeanInfo designer
	Modifying a BeanInfo class

	Adding events to your bean
	Firing events
	Listening for events
	Creating a custom event set

	Creating a property editor
	Creating a String List editor
	Creating a String Tag List editor
	Creating an Integer Tag List editor
	Creating a custom component property editor

	Adding support for serialization
	Checking the validity of a JavaBean
	Installing a bean on the component palette

	Ch 11: Visualizing code with UML
	Java and UML
	Java and UML terms

	JBuilder and UML
	Limited package dependency diagram
	Combined class diagram
	JBuilder UML diagrams defined
	Visibility icons

	Viewing UML diagrams
	JBuilder’s UML browser
	Viewing package diagrams
	Viewing class diagrams
	Viewing inner classes
	Viewing source code
	Viewing Javadoc
	Using the context menu
	Scrolling the view
	Full view
	Partial view

	Refreshing the view

	Navigating diagrams
	UML and the structure pane
	Package diagrams
	Class diagrams

	Customizing UML diagrams
	Setting project properties
	Filtering packages and classes
	Including references from project libraries
	Including references from generated source

	Setting IDE Options

	Creating images of UML diagrams
	Printing UML diagrams
	Refactoring and Find References

	Ch 12: Refactoring code symbols
	Types of refactorings
	Optimize Imports
	Rename refactoring
	Move refactoring
	Change Parameters
	Extract Method
	Introduce Variable
	Surround With Try/Catch

	JBuilder’s refactoring tools
	Setting up for references discovery and refactoring
	Learning about a symbol before refactoring
	Finding a symbol’s definition
	Finding references to a symbol

	Viewing changes before a refactoring

	Executing a refactoring
	Optimizing imports
	Using Optimize Imports

	Rename refactoring a package
	Rename refactoring a class
	Move refactoring a class
	Rename refactoring a method
	Rename refactoring a local variable
	Rename refactoring a field
	Rename refactoring a property
	Changing method parameters
	Extracting a method
	Introducing a variable
	Surrounding a block with try/catch
	Undoing a refactoring
	Saving refactorings

	Ch 13: Unit testing
	JUnit
	Cactus
	Unit testing features in JBuilder
	Discovering tests
	JUnit Test Collector

	Creating JUnit test cases and test suites
	The Test Case wizard
	Adding test code to your test cases
	The Test Suite wizard
	The EJB Test Client wizard

	Using predefined test fixtures
	JDBC fixture
	JNDI fixture
	Comparison fixture

	Creating a custom test fixture
	Working with Cactus
	Cactus Setup wizard
	Creating a Cactus test case for your Enterprise JavaBean
	Running Cactus tests

	Running tests
	JBTestRunner
	Test Hierarchy
	Test Failures
	Test Output

	JUnit TextUI
	JUnit SwingUI
	Runtime configurations
	Defining a test stack trace filter

	Debugging tests

	Ch 14: Creating Javadoc from API source files
	Adding Javadoc comments to your API source files
	Where to place Javadoc comments
	Javadoc tags
	Automatically generating Javadoc tags
	Javadoc @todo tags

	Conflicts in Javadoc comments

	Generating the documentation node
	Choosing the format of the documentation
	Choosing documentation build options
	Choosing the packages to document
	Specifying doclet command-line options

	Generating the output files
	Generating additional files
	Package-level files
	Overview comment files

	Viewing Javadoc
	How JBuilder displays Javadoc

	Maintaining Javadoc
	Changing properties for the documentation node
	Changing node properties
	Changing Javadoc properties
	Changing doclet properties

	Creating a documentation archive file
	Creating a custom doclet

	Ch 15: Deploying Java programs
	Deploying to Java archive files (JAR)
	Understanding the manifest file
	Deployment strategies

	Using the JDK Java Archive Tool
	Running a program from a JAR file
	Viewing archive file contents
	Updating the contents of a JAR file

	Deployment issues
	Is everything you need on the class path?
	Does your program rely on JDK 1.1.x or Java 2 (JDK 1.2 and above) features?
	Does the user already have Java libraries installed locally?
	Is this an applet or an application?
	Download time

	Deployment quicksteps
	Applications
	Applets
	JavaBeans

	Deployment tips
	Setting up your working environment
	Internet deployment
	Deploying distributed applications

	Redistribution of classes supplied with JBuilder
	Additional deployment information
	Deploying with the Archive Builder
	The Archive Builder and resources
	Selecting an archive type
	Specifying the file to be created
	Choosing deployment descriptor files
	Specifying the parts of the project to archive
	Specifying archive content for a Resource Adapter archive
	Determining library dependencies
	Setting archive manifest options
	Selecting a method for determining the application’s main class
	Determining which executable files to build
	Running executables

	Setting runtime configuration options

	Creating executables with the Native Executable Builder
	Generating archive files
	Understanding archive nodes
	Viewing the archive and manifest
	Modifying archive node properties
	Removing, deleting, and renaming archives

	Ch 16: Internationalizing programs with JBuilder
	Internationalization terms and definitions
	Internationalization features in JBuilder
	A multilingual sample application
	Eliminating hard-coded strings
	Using the Resource Strings wizard
	Using the Localizable Property Setting dialog box

	dbSwing internationalization features
	Using JBuilder’s locale-sensitive components
	JBuilder components display any Unicode character
	Internationalization features in the UI designer
	Unicode in the IDE debugger
	Specifying a native encoding for the compiler
	Setting the encoding option
	Native encodings supported
	Adding and overriding encodings
	More about native encodings

	The 16-bit Unicode format
	Unicode support using ASCII and ‘\u’

	JBuilder around the world
	Online internationalization support

	Ch 17: Tutorial: Compiling, running, and debugging
	Step 1: Opening the sample project
	Step 2: Fixing syntax errors
	Step 3: Fixing compiler errors
	Step 4: Running the program
	Saving files and running the program

	Step 5: Fixing the subtractValues() method
	Saving files and running the program

	Step 6: Fixing the divideValues() method
	Saving files and running the program

	Step 7: Fixing the oddEven() method
	Step 8: Finding runtime exceptions

	Ch 18: Tutorial: Building with Ant files
	Step 1: Creating a project and application
	Step 2: Creating the Ant build file
	Step 3: Executing individual targets
	Step 4: Executing the default target
	Step 5: Handling errors with Ant
	Step 6: Adding a target to the Project menu
	Step 7: Setting Ant properties
	Step 8: Adding custom Ant tasks to your project

	Ch 19: Tutorial: Remote debugging
	Step 1: Opening the sample project
	Step 2: Setting runtime and debugging configurations
	Step 3: Setting breakpoints
	Step 4: Compiling the server and copying server class files to the remote computer
	Step 5: Starting the RMI Registry and server on the remote computer
	Step 6: Starting the server process and the client in debug mode and stepping into the cross-proc...

	Ch 20: Tutorial: Visualizing code with the UML browser
	Step 1: Compiling the sample
	Step 2: Viewing a UML package diagram
	Step 3: Viewing a UML class diagram
	Step 4: Adding references from libraries
	Step 5: Filtering UML diagrams

	Ch 21: Tutorial: Creating and running test cases and test suites
	Step 1: Opening an existing project
	Step 2: Creating skeleton test cases
	Step 3: Implementing a test method that throws an expected exception
	Viewing the test failure output
	Fixing the test so it passes

	Step 4: Writing a second test method
	Step 5: Creating a test suite
	Step 6: Running tests

	Ch 22: Tutorial: Working with test fixtures
	Step 1: Creating a new project
	Step 2: Creating a Data Module
	Step 3: Creating a comparison fixture
	Step 4: Creating a JDBC fixture
	Step 5: Modifying the JDBC Fixture to run SQL scripts
	Step 6: Creating a test case using test fixtures
	Step 7: Implementing the test case
	Step 8: Adding a required library
	Step 9: Running the test case

	App A: Creating configuration files for native executables
	Starting the VM
	Configuration file requirements
	File type and location
	Blank lines and comments
	Path conventions

	Directives
	javapath
	mainclass
	addpath
	addjars
	addbootpath
	addbootjars
	addskippath
	vmparam
	include
	includedir
	copyenv
	exportenv
	addparam
	clearparams
	restartcode

	Optional all-in-one launcher support

	App B: Using the command-line tools
	Setting the class path for command-line tools
	Using the -classpath option
	Setting the CLASSPATH environment variable for command-line tools
	UNIX: CLASSPATH environment variable
	Windows: CLASSPATH environment variable

	JBuilder command-line interface
	Accessing a list of options
	Syntax
	Options

	Borland Compiler for Java (bcj)
	Syntax
	Description
	Options
	Cross-compilation options
	VM options

	Borland Make for Java (bmj)
	Syntax
	Description
	Options
	Cross-compilation options
	Specifiers for root classes
	VM options

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

